
Holding onto things in a multiprocessor world

Taylor R. Campbell
riastradh@NetBSD.org

January 13, 2017

Abstract
We present three mechanisms—passive serialization,
passive references, and local counts—by which one
thread can safely acquire, use, release references to re-
sources such as hash table entries, network routes, and
device drivers, while another thread may be creating
new ones or trying to free, destroy, or unload existing
ones.

Unlike mutex locks, reader/writer locks, atomic op-
erations for reference counts, etc., these mechanisms all
scale in parallel to many cores.

We compare the different serial, parallel, and mem-
ory performance characteristics of the three mecha-
nisms to more traditional approaches, and examine their
impacts on API contracts and incremental development
of a parallel network stack.

1 Introduction
The NetBSD kernel is a complex multiprocessor sys-
tem that manages many kinds of hardware and soft-
ware resources, such as network routes, device drivers,
and cached file system objects that may be destroyed or
freed from time to time when no longer in use.

Consider a packet arriving at a network interface.
The NetBSD kernel’s job is to decide where to route it
and transmit it from the appropriate network interface.
What does the kernel do when the packet arrives?

1. The kernel must find a route.

2. Another thread may try to delete the route, but
must wait until all users of the route are complete.

3. The kernel may have to sleep in order to allocate
memory for prepending header data to the packet,
if it is destined to an encapsulated tunnel.

4. A userland process may attempt an ioctl on the
NIC where the packet is destined.

5. Another userland process might try to unload the
device driver for that NIC. That process must wait
until all ioctls are complete and all routes destined
to that NIC are purged.

6. After the packet has been forwarded, the kernel
must notify the thread trying to delete the route that
it is now safe to delete.

7. After the ioctl completes, the kernel must notify
the process trying to unload the device driver that
it is now safe to unload.

Different kinds of resources in the kernel have differ-
ent usage patterns. For example:

Network routes There may be tens of thousands of
of routes in the kernel at any given time, so the
per-resource memory overhead should be moder-
ate. The kernel may process on the order of hun-
dreds of thousands or millions of packets per sec-
ond. We are concerned first with scaling to many
CPUs, since packet-processing is embarrassingly
parallelizable, and secondarily with serial perfor-
mance of the packet path.

Device drivers There will usually be only a few dozen
device drivers in the kernel, so higher memory
overhead is acceptable. However, applications
may rely on the serial performance of each call to a
device driver’s entry point, which may not be par-
allelizable.

2 Acquisition and release
Before using a resource, a process, thread, or CPU—
let’s say a thread—must typically do something to ac-
quire a reference to it, so that it is guaranteed not to be

1

destroyed by another part of the system, until the refer-
ence is released, after which the thread may no longer
use it.

A resource’s lifetime can be broken up into three
parts:

Create/publish Before a resource is made available for
use, any data structures in memory for it must be
initialized, and the initialization must be visible to
all CPUs before the resource is published.

Lookup/use A resource must be looked up before it
can be used—e.g., finding a network route in the
routing table given a destination address—and the
lookup must acquire a reference for the caller. The
caller may then use the resource until it releases
the reference.

Remove/destroy When the kernel decides to destroy a
resource—e.g., when a userland process asks it to
delete a route—it must

(a) first prevent any new users from acquiring
the resource, e.g. by removing it from a ta-
ble;

(b) then wait for all existing users to release the
resource; and

(c) finally destroy the resource when it can guar-
antee nobody is trying to use it.

Often the resources are collected in a central table.
For resources on which threads perform long I/O oper-
ations that are indexed in a table, threads may acquire
references to the table entries and the resources in dif-
ferent ways, handing one off to the other.

3 Traditional approaches
Figure 1 shows a prototypical example of a collection
of resources listed in a table, using a single global mu-
tex lock for the table and all resources, and a reference
count per resource to determine when a resource is no
longer in use.

Publishing a newly created resource, Figure 2, is a
matter of putting it in the table, excluding all other
threads modifying the table. Destroying a resource, Fig-
ure 5, takes three stages as before: prevent new users,
wait for existing users, and finally destroy the resource.
To acquire a resource (Figure 3), a thread must

1. acquire a mutex lock to acquire a reference to all
the table entries;

2. look up an entry for a resource of interest;

3. increment the resource’s reference count to acquire
a reference; and then

4. release the mutex on the table to release its refer-
ence to all the table entries.

At that point, the resource is guaranteed not to be de-
stroyed. Then, when the thread is done with the re-
source, to release the resource (Figure 4) it must

1. decrement the resource’s reference count, and

2. if the count went to zero, notify the thread waiting
to destroy the resource, if there is one.

If this idiom provides performance adequate for your
application, stop here! It is easy to write, easy to prove
correct, and easy to audit. But this idiom does not
scale in parallel for applications that need higher per-
formance.

3.1 Improving lookup concurrency:
reader/writer locks

The first scalability limitation of this prototypical ex-
ample is that only one thread at a time can look up a re-
source in the table. We could replace the table’s mutex
lock by a reader/writer lock: use a writer lock for cre-
ate/publish and remove/destroy, and a reader lock for
for lookups.

With a reader/writer lock, there can be either up to
one writer, or any number of readers, at any given
time—a thread holding a writer lock excludes all other
writers or readers, but a thread holding a reader lock ex-
cludes only writers. This helps if lookups take a long
time, because there can be more than one lookup in
flight.

However, for short-lived mutex sections or reader
sections alike, there is another cost: contention over
the mutex owner or the reader count itself. Both are
implemented in terms of atomic operations, which are
read/modify/write operations on a single word in mem-
ory that are guaranteed to run to completion as if only a
single CPU were performing the operation on memory
without interruption.

In a modern CPU with large caches and write queues,
atomic operations done by multiple CPUs on the same

2

struct foo {

uint64_t key;

...

unsigned refcnt;

struct foo *next;

};

struct {

kmutex_t lock;

kcondvar_t cv;

struct foo *first;

} footab;

unowned waiters rst

NULL

footab

key: 1 … nextrefcnt: 3

key: 2 … nextrefcnt: 0

NULL

struct foo

Figure 1: Prototypical resource and global state.

struct foo *f = alloc_foo(key);

mutex_enter(&footab.lock);

f->next = footab.first;

footab.first = f;

mutex_exit(&footab.lock);

Figure 2: Prototypical create/publish.

mutex_enter(&footab.lock);

for (f = footab.first;

f != NULL;

f = f->next) {

if (f->key == key) {

f->refcnt++;

break;

}

}

mutex_exit(&footab.lock);

Figure 3: Prototypical lookup/acquire.

mutex_enter(&footab.lock);

if (--f->refcnt == 0) {

/* Last user. Notify destroy. */

cv_broadcast(&footab.cv);

}

mutex_exit(&footab.lock);

Figure 4: Prototypical release.

struct foo **fp, *f;

mutex_enter(&footab.lock);

for (fp = &footab.first;

(f = *fp) != NULL;

fp = &f->next) {

if (f->key == key) {

/* (a) Prevent new users. */

*fp = f->next;

/* (b) Wait for old users. */

while (f->refcnt)

cv_wait(&footab.cv,

&footab.lock);

break;

}

}

mutex_exit(&footab.lock);

if (f != NULL)

/* (c) Destroy. */

free_foo(f);

Figure 5: Prototypical remove/destroy.

3

part of memory—such as the mutex owner or the reader
count—require the processors to communicate over the
system bus to repeatedly invalidate one another’s caches
as they compete for ownership of the memory. This cost
grows worse with more CPUs—it is not actually scal-
able in parallel. See [4, Section 4.1 Why Isn’t Concur-
rent Counting Trivial?, p. 30] for more detail.

3.2 Distributing load: hashed locks
Contention over a single mutex or reader/writer lock
can sometimes be mitigated by splitting the work into
several independent tasks. Instead of a single global list
of resources, we can use a hash table of resources, with
some identifier determining which bucket to use. Each
bucket can have an independent lock stored in a sep-
arate cache line to avoid contention between buckets,
as in Figure 6. Lookup need only be slightly modified
to compute the hash first; the other operations must be
modified similarly.

Hashed locks are an easy generic way to attain better
parallelism—provided that the distribution on resources
being used is uniform. If every CPU still wants to use
the same resource, it doesn’t help!

Another similar approach is to associate a separate
lock and condition variable with each resource to han-
dle its reference count, which would cost more mem-
ory in exchange for less contention over the table lock
when releasing resources. But this does nothing help
to reduce contention of lookups, or to reduce the cost
of using the same resource on many CPUs. In fact, on
NetBSD, condition variables themselves are shared and
hashed, so a separate condition variable per resource
may actually cost more memory for no benefit in reduc-
ing contention or spurious wakeups.

3.3 Distributing load: atomic reference
counts

Another source of contention is taking the global or
hashed lock—whatever kind of lock it is, mutex or
reader/writer—just to release a resource when a thread
is done with it. The thread need not use the table any
more, and it need not even coordinate with another
thread trying to destroy the resource as long as there

To mitigate this contention, we can use atomic oper-
ations to manage each resource’s reference count, and
avoid taking the central lock except when the reference
count would transition from nonzero to zero. This is
illustrated in Figure 7 and Figure 8.

struct {

struct foobucket {

kmutex_t lock;

kcondvar_t cv;

struct foo *first;

} b;

char pad[roundup(

sizeof(struct foobucket),

CACHELINE_SIZE)];

} footab[NBUCKET];

size_t h = hash(key);

mutex_enter(&footab[h].b.lock);

for (f = footab[h].b.first;

f != NULL;

f = f->next) {

if (f->key == key) {

f->refcnt++;

break;

}

}

mutex_exit(&footab[h].b.lock);

Figure 6: Hashed resource lookup/acquire.

Conveniently, the protocol for destruction is identical
to that for mutex-locked reference counts in Figure 5,
because the transition from nonzero reference count to
zero reference count in release happens under the same
lock and is signalled via the same condition variable.

Atomic reference counts are safe, in the sense that
if any thread releases the last reference it is guaran-
teed to wake any thread trying to destroy the resource:
the only state transition of interest to a thread trying to
destroy the resource is when it goes from nonzero to
zero. Unfortunately, as with hashed locks, this doesn’t
help if any one resource is in hot demand by many
CPUs—even if the CPUs need only read something
from it nonexclusively, because the reference count up-
dates must be coordinated among the CPUs.

4 No-contention approaches
The basic problem inhibiting scaling in parallel is that
the CPUs must all agree on writes to some shared mem-
ory, the cost of which grows with the number of CPUs.
How can we avoid this contention? Can we exchange
some convenience for performance, or performance of
one operation for performance of another?

4

mutex_enter(&footab.lock);

for (f = footab.first;

f != NULL;

f = f->next) {

if (f->key == key) {

atomic_inc_uint(&f->refcnt);

break;

}

}

mutex_exit(&footab.lock);

Figure 7: Atomic reference count acquire.

unsigned old, new;

do {

old = f->refcnt;

if (old == 1) {

mutex_enter(&footab.lock);

if (f->refcnt == 1) {

f->refcnt = 0;

cv_broadcast(&footab.cv);

} else {

atomic_dec_uint(&f->refcnt);

}

mutex_exit(&footab.lock);

break;

}

new = old - 1;

} while (atomic_cas_uint(&f->refcnt,

old, new) != old);

Figure 8: Atomic reference count release.

NetBSD provides two no-contention APIs, and one
in development, with different performance character-
istics and different implications for API contracts:

• Passive serialization, or pserialize, scales well to
many CPUs with zero memory overhead and al-
most no serial performance overhead, but is usable
only for short-lived uninterruptible readers, such
as looking up a hash table entry to acquire another
kind of reference.

• Passive references, or psref, scale well to many
CPUs with modest memory overhead and can be
held arbitrarily long like reference counts, but only
on a single CPU have somewhat more substantial
serial performance overhead.

• Local counts scale well to many CPUs, can be
held arbitrarily long and be passed from CPU to
CPU, and have little serial performance overhead,
but use memory proportional to the product of the
number of resources and the number of CPUs or
threads.

4.1 Passive serialization
Inserting an entry into a singly-linked list requires a
single-pointer write to memory—nothing else is needed
to preserve any internal invariants for the data structure,
as long as any other content in the entry is fully ini-
tialized already. The same is true of deleting an entry.
Simply reading a singly-linked list requires no writes at
all, and so can be done safely in parallel by any number
of threads.

If some class of resources were never destroyed, a
single thread inserting or deleting resources could op-
erate in parallel with any number of threads looking up
and using the resources, with no synchronization. The
only restriction is that the content of new resources be
visible no later than the pointers to new resources.

The publisher must ensure that it has issued any
writes to memory initializing the content of a list en-
try before it issues the write inserting the entry into the
list. Similarly, after any user reads a pointer to an entry,
it must ensure that the CPU has read the content of the
entry after it has read the pointer to the entry.1 Publish-
ing and use are illustrated in Figure 9 and Figure 10.

1This may be counterintuitive—surely if the writer issues writes
to initialize the content before issuing a write to publish the pointer,
and the reader has already read the pointer, the reader must also see
the content. But in some CPU microarchitectures, the reader’s CPU
may have had stale content cached, yet read the pointer afresh.

5

head data next data next NULL

data next

(a) First write content: initialize data and set next pointer
of new entry to next entry in list.

head data next data next NULL

data next

(b) Then issue memory barrier so data and next pointer
will be published to all CPUs before any subsequent
writes.

head data next data next NULL

data next

(c) Last write pointer: set next pointer of previous entry
to point at new entry. Eventually the new entry, fully
initialized, will be published to all other CPUs.

Figure 9: Memory-ordered linked-list insertion. Dotted
boxes represent memory locations that the current CPU
has written to, but which are not yet guaranteed to be
published to other CPUs.

To satisfy this restriction, the publisher need only ini-
tialize the content of a new entry and then issue a write-
before-write barrier before publishing a pointer to it.
Similarly, the user need only read the pointer to an entry
and then a read-before-data-dependent-read barrier be-
fore dereferencing it—and, fortuitously, a read-before-
data-dependent-read barrier is actually a no-op on most
CPUs. Deletion is even easier: a single pointer write
and no memory barrier is required at all to prevent new
readers from finding an entry in a linked list, as in Fig-
ure 11.

The catch, of course, is that this does not address re-
source destruction. A thread can delete a pointer to a
resource, but how can it know when all other threads
are done using it before destroying it?

The basic concept of passive serialization—and the
closely related read–copy–update used extensively in
the Linux kernel—is to make sure users take only
short time, during which they block interrupts to in-
hibit preëmption and interprocessor interrput process-
ing. Then, once a CPU has deleted a resource from the
table to prevent new users, it can wait for all existing

head data next data next NULL

garbage garbage

(a) First read pointer to new entry.

head data next data next NULL

data next

(b) Then issue memory barrier so data and next pointer
will be freshly read and uncached in any subsequent read.

head data next data next NULL

data next

(c) Last read content.

Figure 10: Memory-ordered linked-list read. Dotted
boxes represent memory locations that the current CPU
has not yet read during a lookup operation, but show
what the current CPU would observe if it did read them.
Before the memory barrier, the CPU may see stale
garbage from its cache.

head data next data next NULL

data next

(a) Before delete.

head data next data next NULL

data next

(b) After delete.

Figure 11: Memory-ordered linked list deletion. No
memory barrier required because there is only one
write.

6

answer IPI
CPU C read section read section

CPU A read section

defer IPI answer IPI

CPU B

send IPI safe to destroy

unlink

time

Figure 12: Passive serialization wait with
pserialize perform.

users to complete by sending an interprocessor interrupt
to all CPUs and waiting until all have responded. If any
other CPU were in the middle of using the resource,
that CPU would also block processing of the interpro-
cessor interrupt until done. The time between when a
table entry is deleted and when all readers potentially
using it have completed is called the grace period. The
sequence of operations is illustrated in Figure 12.

Thus, the stages of passive serialization are as fol-
lows:

Create/publish To publish a newly created resource in
a table, as in Figure 13, a CPU with exclusive ac-
cess to the table must:

(a) Initialize memory for the resource.

(b) Issue a write-before-write memory barrier.

(c) Publish a pointer to the memory.

Lookup/use To look up and use a resource in a table,
as in Figure 14, a CPU must:

(a) Use pserialize read enter to block in-
terrupts.

(b) Look up a pointer to the resource.

(c) Issue a data-dependent-read memory barrier.

(d) Use the memory for the resource.

(e) Use pserialize read exit to restore and
process queued interrupts.

The time between blocking and restoring inter-
rupts is called a pserialize read section. It must
be short to minimize the duration of blocked in-
terrupts, and may not yield control of the CPU to
another thread, e.g. by sleeping.

Delete/destroy To destroy a resource, as in Figure 15,
a CPU with exclusive access to table must:

(a) Remove the pointer to the resource so that no
new users can find it.

(b) Call pserialize perform to send an inter-
processor interrupt to all CPUs that will ex-
ecute after any current users complete, and
wait for it to finish on all CPUs.

(c) Destroy the resource.

Note that there is zero per-resource, per-reference, or
per-CPU memory overhead for any particular appli-
cation of pserialize—the overhead is O(1) per sub-
system that uses pserialize.2 The serial perfor-
mance impact of pserialize for readers is negligible;
pserialize perform, is very expensive, and so use-
ful only when deletion is rare and/or batched.

To facilitate the correct memory barriers, NetBSD
provides PSLIST, for ‘pserialize-safe list’, an alterna-
tive to the traditional sys/queue.h LIST macros. A
PSLIST is a linked list just like sys/queue.h’s LIST,
supporting constant-time insertion at the head or before
or after any element and constant-time removal of an el-
ement, with all the necessary memory barriers for pas-
sive serialization on the writer side the reader side.

Pserialize is used for many table lookups in NetBSD.
Often it is used in tandem with another mechanism such
as atomic reference counts, passive references, or lo-
cal counts, in order to at least provide scalable lookups
if the resource in the table cannot be used and re-
leased immediately. Pserialize is particularly amenable
to chained hash tables and radix trees, and we plan to
use it soon for the routing table, although the current
routing table code is old and crufty and not designed
for multiprocessor environments.

Pserialize is similar to the read–copy–update found
in the Linux kernel. The main difference is that pserial-
ize was documented in a patent[3] that expired several
years before the first read–copy–update patent[7], mak-
ing it legally safer to use with a similar API. But now the
first read–copy–update patent has expired, so we may
replace the implementation of the pserialize(9) API
in NetBSD by the read–copy–update algorithm, which
is simpler and faster.

2Actually, there are exactly two bits of overhead per CPU in the
current implementation, owing to the overcomplicated algorithm that
we use, which is no longer necessary. See below about the patent
situation of passive serialization versus read–copy–update.

7

struct foo *f = alloc_foo(key);

mutex_enter(&footab.lock);

f->next = footab.first;

membar_producer();

footab.first = f;

mutex_exit(&footab.lock);

Figure 13: Pserialize create/publish.

s = pserialize_read_enter();

for (f = footab.first;

f != NULL;

f = f->next) {

membar_datadep_consumer();

if (f->key == key) {

use(f);

break;

}

}

pserialize_read_exit(s);

Figure 14: Pserialize lookup/use.

mutex_enter(&footab.lock);

for (fp = &footab.first;

(f = *fp) != NULL;

f = f->next) {

if (f->key == key) {

/* (a) Prevent new users. */

*fp = f->next;

/* (b) Wait for old users. */

pserialize_perform(footab.psz);

}

}

mutex_exit(&footab.lock);

if (f != NULL) {

/* (c) Destroy. */

free_foo(f);

}

Figure 15: Pserialize delete/destroy.

4.2 Passive references
What a thread may do while it holds a pserialize
reference—i.e., in a pserialize read section—is very
limited. The reason is that the criterion by which a
thread trying to destroy a resource determine whether
it is still in use is extremely coarse: after the resource
has been deleted from the table, any activity on all other
CPUs is taken to mean the resource must no longer be
in use.

Instead of taking activity as an indicator for use, we
could simply record a per-CPU list of exactly which
resources are in use on that CPU. A passive refer-
ence is an entry on a per-CPU list of resources in use
by that CPU. The protocol for acquiring, releasing,
and destroying—assuming some other mechanism, typ-
ically pserialize, for publishing, looking up, and delet-
ing in a table—is:

Acquire Performed by psref acquire:

(a) Block interrupts.

(b) Allocate a list entry on the stack pointing at
the resource and representing the reference.

(c) Insert the entry into the current CPU’s list of
resources in use.

(d) Restore interrupts.

Release Performed by psref release:

(a) Block interrputs.

(b) Remove the entry from the current CPU’s list
of resources in use.

(c) Restore interrupts.

(d) Check a flag indicating whether there is a
thread waiting to destroy the resource, pre-
dicted to be unset. If set, notify that thread
that a reference was released.

Destroy Performed by psref target destroy:

(a) Set a flag indicating that there is a thread
waiting to destroy the resource.

(b) Send an interprocessor interrupt to each CPU
that checks whether the resource in question
is on the CPU’s list of resources in use.

(c) Wait for all CPUs to answer.

(d) If the resource still in use, wait for a few mil-
liseconds or until woken by a thread releas-
ing a resource, and try again.

8

The timed wait in destruction is necessary because the
test for a flag in a releasing thread cannot be interlocked
with a destroying thread without requiring atomic op-
erations in psref release, which is exactly what we
want to avoid. In fact, the explicit wakeups from a re-
leasing thread are only a potentially unnecessary opti-
mization.

The memory overhead of psref grows as
O(#resources) + O(#CPUs) + O(#references). The
serial performance impact of psref for readers is that
of adjusting a per-CPU linked list threaded through
likely-cached memory on the stack, which is noticeable
but small—in network packet routing, it has been
measured to reduce the maximum serial bandwidth by
a few percent. For deletion, psref costs a little more
time than pserialize, because it must do additional work
in an interprocessor interrupt to search for references.

We would use pserialize alone in more applications,
but the restriction on what a CPU can do in a pserial-
ize read section means it is not a drop-in replacement
for reader/writer locks and atomic reference counts.
Instead, we use it in tandem with passive references,
which together are close to a drop-in replacement for
reader/writer locks and atomic reference counts, shown
in Figure 16, Figure 17, and Figure 18. This enables us
to incrementally re-engineer subsystems to be scalable
in parallel, at some cost in serial performance, without
requiring substantial cost up front to redesign them to
be pserialize-safe.

The only API contract requirement that NetBSD
psref imposes beyond a reader/writer lock is that the
holder of a passive reference must remain on the same
CPU from acquisition to release. For many applica-
tions in NetBSD, e.g. soft interrupts for processing net-
work packets, the threads acquiring passive references
are often already bound to a CPU anyway, so this re-
quirement is not a burden. For other applications, this
requires conditionally setting a single flag bit in the
struct lwp object (‘lightweight process’) represent-
ing the thread, and conditionally clearing it when done.

We could have required that passive references be
associated with a thread rather than a CPU. However,
there are typically many times more threads than CPUs
in a running system, and most threads hold no passive
references. This would increase the memory and time
required by passive references: one list head for stor-
age and one interrupt for deletion per thread, rather than
one list per CPU. Since most threads holding passive
references do not hold them for very long times, and
many are bound to CPUs anyway, it is not important

struct foo *f = alloc_foo(key);

psref_target_init(&f->target, footab.psr);

mutex_enter(&footab.lock);

f->next = footab.first;

membar_producer();

footab.first = f;

mutex_exit(&footab.lock);

Figure 16: Create/publish with pserialize/psref.

to let them switch CPUs. Thus, there is some cost and
negligible benefit to associating passive references with
threads instead of CPUs.

4.3 Local counts
Instead of a global reference count, for objects that are
relatively few in number, such as device drivers, we can
allocate memory to each CPU for local counts of refer-
ences that have been acquired or released on that CPU.
The protocol for acquiring, releasing, and destroying is:

Acquire (a) Increment a CPU-local integer.

Release (a) Decrement a CPU-local integer.

(b) If there is a thread waiting to destroy the re-
source, decrement its temporary global refer-
ence count, and if that went to zero, notify
the thread.

Destroy (a) Initialize a temporary global reference
count.

(b) Send an interprocessor interrupt to all CPUs
to contribute each CPU’s local reference
count to the temporary global reference
count.

(c) Wait until the interprocessor interrupt has
completed.

(d) Wait until the temporary global reference
count is zero.

Acquiring a resource’s local count entails only incre-
menting a CPU-local integer in memory—guaranteed
never to be contended. Releasing a resource’s local
count usually entails only decrementing a CPU-local
integer in memory, unless there is a thread trying to
destroy the resource, in which case it may have to ac-
quire a lock and notify a condition variable to wake that

9

struct psref fref;

int bound, s;

/* Bind to current CPU and lookup. */

bound = curlwp_bind();

s = pserialize_read_enter();

for (f = footab.first;

f != NULL;

f = f->next) {

if (f->key == key) {

psref_acquire(&fref,

&f->target, footab.psr);

break;

}

}

pserialize_read_exit(s);

if (f == NULL)

goto fail;

KASSERT(psref_held(&f->target, footab.psr));

...use f...

/* Release psref and unbind from CPU. */

psref_release(&fref, &f->target,

footab.psr);

curlwp_bindx(bound);

Figure 17: Lookup/use with pserialize/psref.

/* (a) Prevent new users. */

mutex_enter(&footab.lock);

for (fp = &footab.first;

(f = *fp) != NULL;

f = f->next) {

if (f->key == key) {

/* (a’) Prevent new lookups. */

*fp = f->next;

/* (b’) Wait for old lookups. */

pserialize_perform(footab.psz);

}

}

mutex_exit(&footab.lock);

if (f != NULL) {

/* (b) Wait for old users. */

psref_target_destroy(&f->target,

footab.psr);

/* (c) Destroy. */

free_foo(f);

}

Figure 18: Delete/destroy with pserialize/psref.

thread. As with passive serialization and passive refer-
ences, destroying requires expensive interprocessor in-
terrupts.

The sequential time cost of local count acquisition
and release is slightly smaller than passive references—
incrementing and decrementing a CPU-local counter,
rather than maintaining a list of pointers. But more im-
portantly, local counts are more flexible than passive
references because they are not required to remain on
the same CPU. Consequently they are safe to drop in
to any nontrivial existing code base with negligible im-
pact on serial performance, parallel scalability, or API
contract.

However, the memory cost of local counts is much
higher than anything else mentioned so far: O(#CPU×
#resource). Local counts are currently an experiment
on a branch in NetBSD for making device driver un-
loading MP-safe without inflicting a sequential or paral-
lel performance penalty on all device driver operations.

5 Related work

There have been many abstractions built for holding
onto things in a multiprocessor world. Here is a brief
listing of related work:

Hazard pointers are a pattern for listing the point-
ers to resources in use,[6] prefiguring the design
of passive references, but with a somewhat more
complicated presentation and no definite API pre-
sented out of the box.

Shared reference pointers or SRP in OpenBSD are
a cheaper variant of hazard pointers that use an
array, rather than linked list, of pointers in use
by a CPU.[1] The API is considerably more in-
volved than the NetBSD psref(9) API, and re-
quires more memory barriers and atomic opera-
tions under the hood.

Read–copy–update or RCU for short is essentially the
same general idea as passive serialization, and is
widely used in the Linux kernel.[5] The API is a
little more elaborate than the pserialize API—for
example, it includes a mechanism for queueing a
list of callbacks for when all extant read sections
are complete. The implementation is a little less
complex and faster than the pserialize implemen-
tation, owing to patent issues.

10

Quiescent-state-based and epoch-based reclamation
are variations on RCU[2] that avoid interprocessor
interrupts—and thus are easier to adapt to userland
libraries—at the expense of more onerous API
contracts requiring users to identify not when they
are using resources, but when they are not using
any resources.

References
[1] David Gwynne and Jonathan Matthew.

srp enter(9): Shared reference point-
ers. OpenBSD Manual, 2017. URL: http:

//man.openbsd.org/OpenBSD-current/

man9/srp_enter.9.

[2] Thomas Edwart Hart. Comparative performance
of memory reclamation strategies for lock-free and
concurrently-readable data structures. Master’s the-
sis, University of Toronto, 2005.

[3] James P. Hennessy, Damian L. Osisek, and
W. Seigh II Joseph. Passive serialization in a multi-
tasking environment. U.S. Patent 4,809,168, 1989.

[4] Paul McKenney. Is Parallel Programming
Hard, And, If So, What Can You Do About It?
2011. URL: https://www.kernel.org/pub/

linux/kernel/people/paulmck/perfbook/

perfbook.2011.01.02a.pdf.

[5] Paul McKenney and Jonathan Walpole. What is
rcu, fundamentally? Linux Weekly News, 2007.
URL: https://lwn.net/Articles/262464/.

[6] Maged M. Michael. Hazard pointers: Safe memory
reclamation for lock-free objects. IEEE Trans. on
Parallel and Distributed Systems, 15(6):491–504,
June 2004.

[7] John D. Slingwine and Paul McKenney. Apparatus
and method for achieving reduced overhead mutual
exclusion and maintaining coherency in a multipro-
cessor system utilizing execution history and thread
monitoring. U.S. Patent 5,442,758, 1995.

11

