
Concurrency Bugs
in the Network Stack of NetBSD

Ryota Ozaki
ozaki-r@{iij.ad.jp,netbsd.org}

AsiaBSDCon 2018 BoF

Table of Contents
● Brief overview of NetBSD internals
● Examples of deadlocks
● Examples of race conditions

Brief Overview of NetBSD Internals
● Software Interrupts
● Synchronization primitives
● Lock primitives

Software Interrupts
● softint(9) -- machine-independent software interrupt

framework
● A softint has thread (LWP) context

○ It can suspend and resume on sleep/block
● It can use synchronization primitives that implicitly sleep

or block
○ Adaptive mutex(9), rwlock(9), etc.

● It can’t use synchronization primitives that explicitly sleep
or block
○ condvar(9), kmem(9) with KM_SLEEP, etc.

Software Interrupts
● Priority levels

○ softclock < softbio < softnet < softserial
● Dedicated LWPs

○ LWPs of each priority level are created on each CPU
○ E.g., softnet/0 and softserial/1

● API
○ softint_establish -- register a softint with a priority level
○ softint_schedule -- schedule the registered handler

Software Interrupts
● Dispatch points (fast softint)

○ Immediate after (hardware) interrupt handler execution (fast
softint)

○ Just before returning to the user mode
● Dispatch order

○ Higher priority level first
○ FIFO for each handler on a priority level

■ Handlers are listed
■ If one handler gets stuck, subsequence handlers never run

○ Normal LWPs are dispatched after all pending softints are done

callout(9)
● Timer -- execute a function after a specified length of time
● It is a softint handler (softclock)
● It runs expired timers one by one (FIFO)

○ If one handler gets stuck, subsequence handlers never run

Synchronization Primitives
● condvar(9)
● xcall(9)

condvar(9)
● Condition variable, condvar, cv
● API

○ cv_wait(cv, mtx): sleep on the cv until someone wakes up
○ cv_broadcast(cv): wake up LWPs sleeping on the cv
○ Both APIs need to be called with holding a mutex

to avoid race conditions

xcall(9)
● Machine-independent cross call interface
● A user can run an arbitrary function on each CPU
● Typical usage

○ xc_wait(xc_broadcast(XC_HIGHPRI, func, arg1, arg2))
■ XC_HIGHPRI uses softints to run a callback
■ xc_wait waits for completions of all callbacks

● Note that xcall processes just one request at a time
○ Subsequent requests need to wait for the completion of a running

request

Lock Primitives
● mutex(9)
● rwlock(9)
● pserialize(9)
● psref(9)
● localcount(9)

mutex(9)
● Two types

○ Spin -- busy wait
○ Adaptive -- busy wait & sleep

● Recursive acquisition is not supported
● softnet_lock

○ An adaptive mutex for the network stack
○ It used to be used to protect the network stack instead of

KERNEL_LOCK
○ softint/callout handlers typicall tries to hold it at the beginning of

their handlers

rwlock(9)
● Usual readers-writer lock

pserialize(9)
● Provide a facility to wait for an object to be released by

any LWPs
○ Like Linux (classic) RCU

● API for readers: pserialize_read_{enter,exit}
○ An object acquired inside a read section is guranteed to be not

destroyed inside the section
● API for writers: pserialize_perform

○ Wait for an object to be released any LWPs

pserialize(9) -- Typical Usage

● Reader
○ s = pserialize_read_enter();
○ PSLIST_FOREACH(item, ...) {
○ if (match(item)) {
○ // do something useful
○ }
○ }
○ pserialize_read_exit(s);

● Constraints for readers
○ Must not sleep/block inside the

section

● Writer
○ mutex_enter(mtx);
○ PSLIST_REMOVE(item, ...);
○ pserialize_perform();
○ mutex_exit(mtx);
○ // destroy the item

● Constraints for writers
○ Removing an item needs to be

serialized
○ pserialize_perform also needs to

be serialized

pserialize(9)
● pserialize_perform

○ Very slow
■ Waits until context switches take place on each CPU three times

psref(9)
● Passive reference
● Allow to acquire/release a reference of an object cheaply

○ No atomic operations involved
● Can hold a reference over sleeps/blocks unlike

pserialize(9)
○ LWP migrations between CPUs are not allowed

● Waiting for reference releases is quite heavy like
pserialize(9)

psref(9)
● API readers: psref_{acquire,release}
● API writers: psref_target_destroy

○ Wait until all references to a target object have been released
○ Use xcall(9) to check references on each CPU
○ Very slow

● Another API: curlwp_bind and curlwp_bindx
○ It suppresses the current LWP from being migrated between

CPUs
○ Needed for uses of psref in normal LWP contexts

localcount(9)
● Reference counting without atomic operations
● Have per-CPU counters on a target object

○ The data size increases as per the number of CPUs
● Allow holding a reference over sleeps/blocks and LWP

migrations
● API for readers: localcount_{acquire,release}
● API for writers: localcount_drain

○ Wait until all references to a target object have been released
○ Use condvar(9)
○ Very slow

Examples of Deadlocks
● pserialize_perform and callout
● localcount_drain and pserialize_perform

pserialize_perform and callout
● If pserialize_perform is called with holding a mutex that

can be held in callout handlers, a deadlock can occur
● Resource dependency graph

○ softnet_lock => pserialize_perform => kpause => callout =>
softnet_lock

pserialize_perform and callout
● The check instructions of pserialize_perform

○ do {
 xc_wait(xc_broadcast(XC_HIGHPRI, nullop, ...));
 kpause(...);
} while (!finished());

● kpause sleeps a specified period by using callout(9)
● If a callout handler takes a mutex that is held by an LWP

that executes pserialize_perform, kpause never finish

localcount and pserialize_perform
● Resource dependency graph

○ localcount_drain => xc => mtx => pserialize_perform => xc
● A code snippet that causes a deadlock

○ mutex_enter(&mtx);
○ PSLIST_REMOVE(item, ...);
○ pserialize_perform(psz);
○ localcount_drain(&item->localcount, &cv, &mtx);
○ mutex_exit(&mtx);

localcount and pserialize_perform
● A code snippet that causes a deadlock

○ mutex_enter(&mtx);
○ PSLIST_REMOVE(item, ...);
○ pserialize_perform(psz);
○ localcount_drain(&item->localcount, &cv, &mtx);
○ mutex_exit(&mtx);

● Explanation
○ Thread A: calls localcount_drain, it releases temporarily mtx then

calls a xcall

localcount and pserialize_perform
● A code snippet that causes a deadlock

○ mutex_enter(&mtx);
○ PSLIST_REMOVE(item, ...);
○ pserialize_perform(psz);
○ localcount_drain(&item->localcount, &cv, &mtx);
○ mutex_exit(&mtx);

● Explanation
○ Thread B: calls pserialize_perform with holding mtx but

pserialize_perform gets stuck on xcall that is used by
localcount_drain of Thread A

localcount and pserialize_perform
● A code snippet that causes a deadlock

○ mutex_enter(&mtx);
○ PSLIST_REMOVE(item, ...);
○ pserialize_perform(psz);
○ localcount_drain(&item->localcount, &cv, &mtx);
○ mutex_exit(&mtx);

● Explanation
○ Thread C (xc_thread, a callback for localcount_drain): tries to take

mtx but fails because it’s held by Thread B

localcount and pserialize_perform
● Resource dependency graph

○ localcount_drain (A) => xc (C) => mtx (B) => pserialize_perform
(B) => xc

Examples of Race Conditions
● A xcall bug
● curlwp_bind and LWP migration
● Reference leaks on callout_reset

A xcall Bug
● Typical usage

○ xc_wait(xc_broadcast(XC_HIGHPRI, func, arg1, arg2))
■ XC_HIGHPRI uses softints to run a callback
■ xc_wait waits for completions of all callbacks

● xcall manages running callbacks and finished callbacks
with two global counters: xc_headp and xc_donep
○ When one request is accepted, xc_headp += N where N is the

number of CPUs
○ When one callback finishes, xc_donep++
○ Once xc_donep == xc_headp, the request is competed

A xcall Bug
● The bug

○ xc_donep++ was done before executing a callback
● Impacts

○ xc_wait can return before the last request has been done
○ A subsequent request can be accepted

● Solution
○ xc_donep++ after executing a callback

curlwp_bind and LWP migration
● curlwp_bind and psref

○ bound = curlwp_bind();
○ psref_acquire(...);
○ psref_release(...);
○ curlwp_bindx(bound);

● psref_release has an assertion that checks whether a
current LWP hadn’t migrated

● But the assertion rarely failed for some reason...
● curlwp_bind couldn’t surely prevent migrations
● What happened?

curlwp_bind and LWP migration (Explanation)
● curlwp_bind just sets the LP_BOUND flag to the current

LWP
● The flag suppresses a migration
● A migration takes place on a context switch if scheduled
● The scheduler load-balances LWPs between CPUs

○ It forces to migrate a hogging LWP to another CPU
○ It periodically checks all LWPs in a kthread, schedules migrations
○ It checks LP_BOUND and skips LWPs with the flags

● A context switch (mi_switch) doesn’t check the flag

curlwp_bind and LWP migration (Explanation)
● Thread A: is running on one CPU
● Scheduler: does load balancing on another CPU

○ And schedule Thread A to be migrated
● Thread A: calls curlwp_bind and psref_acquire
● Thread A: is preempted and is migrated to another CPU
● Thread A: is dispatched again and calls psref_release

○ psref_release notices the migration and boom!

curlwp_bind and LWP migration (Explanation)
● Solution

○ Check the flag in mi_siwtch too

That’s it

