
Toward MP-safe Networking
in NetBSD

Ryota Ozaki <ozaki-r@iij.ad.jp>
Kengo Nakahara <k-nakahra@iij.ad.jp>

EuroBSDcon 2016
2016-09-25

Contents

● Background and goals
● Approach
● Current status
● MP-safe Layer 3 forwarding
● Performance evaluations
● Future work

Background

● The Multi-core Era
● The network stack of NetBSD couldn’t utilize

multi-cores
○ As of 2 years ago

CPU 0

CPU 1

NIC A NIC B

Our Background and Our Goals

● Internet Initiative Japan Inc. (IIJ)
○ Using NetBSD in our products since 1999
○ Products: Internet access routers, etc.

● Our goal
○ Better performance of our products, especially

Layer 2/3 forwarding, tunneling, IPsec VPN, etc.
→ MP-safe networking

Our Targets

● Targets
○ 10+ cores systems
○ 1 Gbps Intel NICs and virtualized NICs

■ wm(4), vmx(4), vioif(4)

○ Layer 2 and 3
■ IPv4/IPv6, bridge(4), gif(4), vlan(4), ipsec(4), pppoe(4), bpf(4)

● Out of targets
○ 100 cores systems and above
○ Layer 4 and above

■ and any other network components except for the above

Approach

● MP-safe and then MP-scalable
● Architecture

○ Utilize hardware assists
○ Utilize lightweight synchronization mechanisms

● Development
○ Restructure the code first
○ Benchmark often

Approach : Architecture

● Utilize hardware assists
○ Distribute packets to CPUs by hardware

■ NIC multi-queue and RSS

● Utilize software techniques
○ Lightweight synchronization mechanisms

■ Especially pserialize(9) and psref(9)

○ Existing facilities
■ Fast forwarding and ipflow

Forwarding Utilizing Hardware Assists

CPU 0

CPU 1

NIC A

CPU 2

CPU 3

queue 0

queue 1

queue 2

queue 3

Rx H/W queues

queue 0

queue 1

queue 2

queue 3

NIC B

Tx H/W queues

Packets are distributed
by hardware based on
flow (5-tuples)

Packets are processed
on a received CPU to
the last

Least locks

Approach : Development

● Restructure the code first
○ Hard to simply apply locks to the existing code

■ E.g., hardware interrupt context for Layer 2, cloning/cloned routes, etc.

○ Need tests to detect regressions
● ATF tests

○ Automated and isolated tests of the network stack
■ Thanks to rump kernels

○ 320 test cases in total related to networking
■ 130 test cases have been added since NetBSD 7

■ New categories: IP forwarding, ARP/NDP, IPv6, routes (flags and
messages), bridge, gif, tun, tap, pppoe, ifconfig (commands/options)

○ Only 2 minutes to run all the test cases

Approach : Development (cont’d)

● Benchmark often
○ Measure speedup
○ Measure (single-thread) overheads

● Performance evaluation environments
○ Easy to retry tests by anyone else
○ Easy to replicate the environment

■ Ansible

● ipgen (https://github.com/iij/ipgen)
○ netmap-based packet generator running on FreeBSD
○ Support RFC 2544 tests

Current Status

NetBSD’s Goal

Our Goal

-current

Planned
work

Our local
changes

Our
contributions

Our Contributions in -current :
Device Drivers

● MSI/MSI-X support
○ i386 and amd64

● Interrupt distribution / affinity
○ intrctl(8) changes interrupt destination CPUs

● MP-safe network device drivers
○ wm(4), vioif(4) and vmx(4)

● Hardware multi-queue support of wm(4)

Our Contributions in -current :
Network Components

● MP-safe bridge(4) and gif(4)
● Partial MP-safe Layer 3

○ Interfaces, IP address, etc.
● Important restructuring

○ Separate ARP/NDP caches from the routing table
■ Based on lltable/llentry of FreeBSD

○ Softint-based packet Rx processing
■ Except for net80211 and bpf(4)

● Lots of ATF tests for the network stack

Check our presentation at AsiaBSDCon 2015 (http://www.netbsd.org/gallery/presentations/)
for details

http://www.netbsd.org/gallery/presentations/

Our Local Changes

● Experimental MP-safe Layer 3 forwarding
● Packet Rx processing optimization

CAVEAT: the changes don’t get
consensus in the community yet and
are not guaranteed to be merged

Planned Work

● Complete MP-ification of Layer 3
○ Remaining non MP-safe stuffs: statistic counters,

nd_defrouter, nd_prefix, etc.
● MP-ifications

○ vlan(4)
○ ipsec(4) including opencrypto
○ pppoe(4)

MP-safe Layer 3 Forwarding

● Tools
○ Hardware assists
○ Software techniques

● Changes for MP-safe Layer 3 Forwarding

Tools

● Hardware assists
○ NIC hardware multi-queues
○ MSI/MSI-X
○ Interrupt distribution / affinity

● Software techniques
○ Lightweight synchronization
○ Fast forwarding and ipflow

Hardware assists

● Recent Ethernet controllers have multiple
hardware queues for packet Tx/Rx

● MSI-X allows to have an interrupt on each
queue

● We can set an interrupt affinity to a CPU
○ Set by device drivers or intrctl(8)

● We can distribute packets between CPU by
RSS (receive-side scaling)
○ Classified by 5-tuples

Interrupt Distributions

Packet distribution by
hardware assists

CPU 0

CPU 1

Rx queue
Tx queue

legacy
interrupt

CPU 0

CPU 1

CPU 2

CPU 3

Rx queue 0
Tx queue 0

msix0
vec 0

Rx queue 1
Tx queue 1

msix0
vec 1

Rx queue 2
Tx queue 2

msix0
vec 2

Rx queue 3
Tx queue 3

msix0
vec 3

Old

intrctl(8)

● Enable to change the interrupt affinity
● Support only x86 for now

CPU 0

CPU 1

CPU 2

CPU 3

Rx queue 0
Tx queue 0

msix0
vec 0

Rx queue 1
Tx queue 1

msix0
vec 1

Rx queue 2
Tx queue 2

msix0
vec 2

Rx queue 3
Tx queue 3

msix0
vec 3

intrctl affinity -i ’msix0 vec 1’ -c 0

Example: Direct interrupts of queue 1 to CPU 0

intrctl(8) : Screenshots

● Change affinity to other CPU and show (after)

Synchronization Techniques

● pserialize(9) and psref(9)
● An example of pserialize(9)
● An example of psref(9)

pserialize(9) and psref(9)

● Lightweight synchronization primitives
○ Sort of deferred processing in the literature

■ Cf. RCU of Linux and hazard pointers

○ Lightweight read and heavyweight write
● Reader critical sections

○ pserialize can be used for those that don’t sleep
○ psref can be used for those that may sleep

● Writer side
○ Both provide a mechanism that waits until readers

release referencing objects

An Example of pserialize(9) : reader

s = pserialize_read_enter();
IFADDR_READER_FOREACH(ifa, ifp) {

 /* Do something on ifa, which doesn’t sleep */

}
pserialize_read_exit(s);

Iterate addresses of an interface with pserialize

ifnet ifaddr ifaddr ifaddr

An Example of psref(9) : reader

s = pserialize_read_enter();
BRIDGE_IFLIST_READER_FOREACH(bif, sc) {
 struct psref psref;

 psref_acquire(&psref, &bif->bif_psref, bridge_psref_class);
 pserialize_read_exit(s);

 /* Do something may sleep */

 s = pserialize_read_enter();
 psref_release(&psref, &bif->bif_psref, bridge_psref_class);
}
pserialize_read_exit(s);

Acquiring a reference of a bridge member entry by psref(9)
on an interaction of the bridge member list

entry

member

entry entry

member member

An Example of pserialize(9) and psref(9) :
writer

BRIDGE_LOCK(sc);

BRIDGE_IFLIST_WRITER_FOREACH(bif, sc) {
 if (strcmp(bif->bif_ifp->if_xname, name) == 0)
 break;
}
PSLIST_WRITER_REMOVE(bif, bif_next);

pserialize_perform(sc->sc_iflist_psref.bip_psz);

BRIDGE_UNLOCK(sc);

psref_target_destroy(&bif->bif_psref, bridge_psref_class);

/* Free bif safely */

Remove a member from the list with holding a lock
and wait for readers left entry

member

entry entry

member member

Fast Forwarding and ipflow

● Data structures for the routing table
● Fast forwarding
● ipflow

Data Structures for the routing table

● The routing table (backend)
○ Radix tree

● rtentry
○ Representation of a route

● rtcache
○ Caches to reduce looking up a route from the radix

tree
○ Per-CPU rtcache for Layer 3 forwarding

Routing
table

rtcachertentry

rtentry Lookup (slow)

Lookup (slow)
Fetch (fast)

Fast Forwarding

wm0 wm1

ip_forward

ip_output

ether_output

Normal forwarding
Use rtcache or
lookup routing table

wm0 wm1

ip_forward

Fast forwarding

ether_input

ip_input

ether_input

ip_input ip_output

ether_output

If ipflow hit,
skip Layer 3

Routing
table

Ipflow
hash list

Routing
table

Create
an entry

ipflow

● Route caches used by fast forwarding
● ipflow is a hash list

○ Key: struct ip (source and destination addresses)
○ Value: rtcache

● Per-flow rtcaches
○ More scalable compared to per-CPU rtcaches for

Layer 3 forwarding

hash

hash

hash

ipflow entry

Calculated
from struct ip

rtcache

ipflow entry

rtcache

ipflow

Changes for MP-safe Layer 3 Forwarding

● Packet Rx/Tx processing and queuing
● MP-safe interfaces and addresses
● MP-safe routing table
● Scaling up Layer 3 forwarding
● Optimizing packet Rx processing

Our local
changes

Packet Rx/Tx Processing and Queuing

● Rx processing mess
○ Layer 2 processing including bridge(4), vlan(4), fast

forwarding, bpf(4) run in hardware interrupt context
○ Hardware interrupt context is an enemy of MP-ification

■ No sleep is allowed
■ Only spin mutex can be used

● Softint-based Rx processing
○ Run Layer 2 (and above) in softint (per-CPU)

■ Except for bpf(4)...

○ Interrupt handlers of device drivers just put packets to
a per-CPU queue and schedule softint

Packet Rx/Tx Processing and Queuing

● Tx processing
○ From Layer 2 to an interface (device driver)
○ If the driver supports hardware multi-queue, the upper

layer just passes packets directly
■ If not, it enqueues packets into the traditional if_snd queue of the

interface

● Tx processing in wm(4)
○ wm(4) has multiple queues corresponding to hardware

queues to temporarily store packets passed from the
upper layer

Softint and Queuing on L3 Forwarding
Old

-current H/W interrupt softint

Driver L2 L3 L2 Driver

Per-cpu queues Multiple queues
(only wm(4))

Output queue
per interface

Input queue
for IP

H/W Rx
queues

H/W Tx
queues

Oops!

MP-safe Interfaces and addresses

● Applied pserialize(9) and psref(9)
● Interfaces (struct ifnet)

○ Iterating interfaces with pserialize or psref
○ Calling ioctl to an interface with holding psref of it
○ rcvif (*ifp) of mbuf is changed to an interface index

to avoid dangling pointers
● Addresses (struct ifaddr)

○ Three data stores for IPv4
■ Global list, global hash list and list per interface

○ Get an address from either with pserialize or psref

MP-safe Routing Table

● An experimental design of MP-safe routing
table
○ Use rwlock

■ psz and psref are difficult to apply to the routing table because it’s
not a lockless data structure

○ Limited scalability
● rwlocks

○ A global rwlock for each the backend and rtcaches
○ A rwlock for each rtentry

Local
changes

MP-safe Routing Table (cont’d)

● If rtcaches hit:
○ No need to hold any writer locks
○ Resulting in good scalability

● If not:
○ Performance of Layer 3 forwarding decreases heavily
○ It can easily happen because NetBSD has just one

rtcache per CPU in -current
■ Multiple flows on one CPU cause contentions on the rtcache

Ipflow
hash list
Ipflow

hash list
Ipflow

hash list

Scaling up Layer 3 Forwarding

● Reuse ipflow
○ Apply ipflow to Layer 3 (normal) forwarding as well as

fast forwarding
● Make ipflow per-CPU

○ Apply both normal forwarding and fast forwarding

Routing
table

rtcachertentry

rtentry

rtentry Ipflow
hash list

Include rtcache

Local
changes

Ipflow
hash list
Ipflow

hash list
Ipflow

hash list

Scaling up Layer 3 Forwarding (cont’d)

wm0 wm1

ip_forward

ip_output

ether_output

before

Use rtcache or
lookup routing table

wm0 wm1

after

ether_input

ip_input

ether_input

ip_input ip_output

ether_output

Routing
table

Ipflow
hash list

Routing
table

Use per-CPU
ipflow at first

ip_forward

Poll Mode

● An optimization technique of Rx processing
○ Inspired by NAPI of Linux and the like
○ Also one of DoS/livelock mitigation

● Overview
○ Disable interrupts during Rx processing
○ No queuing

● Support only for wm(4) for now

Local
changes

Poll Mode (cont’d)

HW
Interrupt
handler

Softint

Interrupt
Disable
interrupt

Rx queue

Enable
interrupt

Schedule
softint

Pass to
upper layers

HW
Interrupt
handler

Softint

Interrupt
Disable
interrupt

Enable
interrupt

Schedule
softint

Pass to
upper layers

[Original] [Poll Mode]

Softint and Queuing with Poll Mode

Ours H/W interrupt softint

Multiple queues
(only wm(4))

H/W Rx
queues

H/W Tx
queues

-current Driver L2 L3 L2 Driver

Performance Evaluations : Settings

● Hardware
○ DUT (device under test): Supermicro A1SRi-2758F

■ 8 core Atom C2758 SoC (2.4 GHz)
■ 4 port I354 Ethernet adapter (each port has 8 TX/RX queues)

○ Packet generator box: BPV4 (our product)
■ 4 core Atom C2558 SoC (2.4 GHz)
■ 4 port I354 Ethernet adapter (each port has 8 TX/RX queues)

● DUT kernel
○ Based on NetBSD-current at 2016-08-24

with our local changes

CAVEAT: the changes are incomplete and resulting
performance would degrade by further developments

Performance Evaluations : Settings

● Targets
○ Layer 3 forwarding
○ 1, 2, 4, 5 and 8 cores

● Tests
○ RFC 2544 throughput by ipgen
○ UDP/IPv4 packets
○ Unidirectional

● Note that packet distributions
○ We adjust IP addresses to distribute packets almost

equally between CPUs

Setups for L3 forwarding Evaluation

DUT

ipgen

wm0 wm1

igb0 igb1

forwarding

252 flows

172.16.0.2/24 172.16.1.2/24

172.16.0.1/24 172.16.1.1/24

L3 forwarding

Throughput vs. # of cores :
Normal forwarding

15%

72%

Without per-CPU ipflow,
throughputs are around
50-60 Mbps

Throughput vs. # of cores :
Fast forwarding

30%

100%98%

Summary of Experimental Results

● Frames per second per # of cores
○ At 64 bytes

1 core 2 cores 4 cores 5 cores 8 cores

Wire rate 1,488,095 1,488,095 1,488,095 1,488,095 1,488,095

Fast
forwarding

455,727
30%

688,241
46%

1,190,617
80%

1,460,193
98%

1,488,095
100%

Normal
forwarding

224,375
15%

372,022
24%

674,290
45%

762,646
51%

1,078,865
72%

Future Work

● Evaluate with 10 Gbps NICs
● Explore alternatives of the routing table

backend
● Poll mode with either of softint and LWP

○ To prevent userland starvation

Backup

Expected Questions

● Q: Why don’t you measure with 10 GbE?
○ A: Our 10 GbE aren’t MP-safe yet
○ A: Our immediate target is 1 GbE

● Q: Why don’t you use netmap/DPDK if
performance really matters?
○ A: Difficult to cooperate with existing tools including

ours for our products
● How do you test MP-safe?

○ A: Run ATF with LOCKDEBUG
○ Do ioctl repeatedly while applying fluctuating traffic

■ If there are bugs, the kernel panic for about 10minitues
■ So, when the kernel run completely a few days, it probably ok

Expected Questions

● Q: Why do you use rwlock for the routing table
despite NetBSD has pserialize/psref?
○ A: We cannot simply apply serialize/psref to the routing

table
■ because the radix tree isn’t a lockless data structure

■ because a route can be deleted in softint but pserialize_perform and
psref_target_destroy cannot be used in softint

● A big restructuring is required

○ A: We don’t have a good alternative to the radix tree
yet

○ A: We (IIJ) want to make Layer 3 MP-safe right away
■ To MP-ify other components like ipsec(4)

Expected Questions

● Q: What about the overhead of ipflow?
○ A: Not trivial (see the next slide)
○ A: Hash table size is 64 while there are 31 flows

The Case of gif(4)

● What’s gif?
○ A generic tunneling pseudo device
○ IPv[46] over IPv[46]

● Why gif?
○ It’s a good first step prior to other complex tunneling

facilities
■ gif(4) is a very basic tunneling device

○ It uses a common IP tunneling utility, ip_encap
■ ip_encap is used by ipsec(4)

gif(4) and ip_encap

encaptab list
(pslist(9))

gif_softc list

1. Iterate on the encap_table
○ Find the highest priority struct encap

2. Get a gif(4) softc
○ On receiving a packet
○ Not iterate gif_softc_list in fast path

Reader processing

1.

2. e.g. stf_softc list

gif_softc_list

encap_table

The objects can be freed
at anytime in packet
processing using
ip_encap

The objects can be freed
at anytime in gif(4)
packet processing

gif(4) to gif(4) Forwarding
Old

H/W interrupt softint A

Driver L2 inner L3 L2 Driver

Output queue
per interface

Input queue
for gif

outer L3 outer L3

softint B softint C

Input queue
for IP

Output queue
for gif

-current + our local changes

Output queue
per interface

per-CPU
queues

Setups for gif(4) Evaluation
DUT1

ipgen

wm1

igb0 igb1

forwarding

8 flows

172.16.0.2/16 172.16.1.2/16

172.16.0.1/16 172.16.1.1/16

DUT2

wm0

wm0

wm1

gif0

forwarding
gif1

gif7

:
:

gif0

gif1

gif7

:
:

eight alias addresses
for each gif

● Adjustment
○ 1 gif(4) per 1 CPU
○ 1 flow per 1 gif(4)

Throughput vs. # of cores : gif(4)

9%

51%

Overhead of ipflow

72%

85%

1 flow per CPU w/o ipflow
(i.e., per-CPU rtcache)

Summary of Experimental Results with 5
cores
● Frames per second per # of cores

○ at 64 bytes

1 core 2 cores 4 cores 5 cores 8 cores

Wire rate 1,488,095 1,488,095 1,488,095 1,488,095 1,488,095

bridge(4) 381,322
25%

613,837
41%

1,191,634
80%

1,488,095
100%

1,488,095
100%

Fast
forwarding

455,727
30%

688,241
46%

1,190,617
80%

1,460,193
98%

1,488,095
100%

Normal
forwarding

224,375
15%

372,022
24%

674,290
45%

762,646
51%

1,078,865
72%

gif(4) 138,492
9%

242,251
16%

425,502
28%

772,528
51%

Dangling Pointers on struct ifnet

● Many structures have a pointer of an ifnet (ifp)
● In the MP-safe world, *ifp can be freed
● Solution

○ Replace a pointer with an interface index and get ifp
from the interface database
■ With pserialize(9) or psref(9)
■ It adds some overhead

● Structures we needed the change
○ mbuf (rcvif)

■ Need to gain a reference of ifp on ip_input

○ ip_moptions, ip6_moptions

Dangling Pointers on struct ifnet (cont’d)

● A case when an interface pointer is always
valid
○ If an object having ifp always lives shorter than the

ifnet object, we can assume that *ifp is always valid
○ IOW, if an referencing object is destroyed on ifnet

destruction, *ifp is always valid
○ Examples of this case

■ rtentry->rt_ifp
■ rtentry->rt_ifa (struct ifaddr)

