Toward MP-safe Networking
iIn NetBSD

Ryota Ozaki <ozaki-r@iij.ad.jp>
Kengo Nakahara <k-nakahra@iij.ad.jp>

Contents

Background and goals
Approach

Current status

MP-safe Layer 3 forwarding
Performance evaluations
Future work

Background

e [he Multi-core Era
e The network stack of NetBSD couldn’t utilize

multi-cores
o As of 2 years ago

/ CPUO \
NIC A NIC B

CPU 1

Our Background and Our Goals

e [nternet Initiative Japan Inc. (11J)

o Using NetBSD in our products since 1999
o Products: Internet access routers, etc.

e QOur goal
o Better performance of our products, especially

Layer 2/3 forwarding, tunneling, IPsec VPN, etc.
— MP-safe networking

Our Targets

e Targets

o 10+ cores systems

o 1 Gbps Intel NICs and virtualized NICs
m wm(4), vmx(4), vioif(4)
o Layer2and 3
m |Pv4/IPv6, bridge(4), gif(4), vlan(4), ipsec(4), pppoe(4), bpf(4)

e QOut of targets

o 100 cores systems and above

o Layer 4 and above
m and any other network components except for the above

Approach

e MP-safe and then MP-scalable

e Architecture

o Utilize hardware assists

o Utilize lightweight synchronization mechanisms
e Development

o Restructure the code first
o Benchmark often

Approach : Architecture

e Utilize hardware assists

o Distribute packets to CPUs by hardware
m NIC multi-queue and RSS

e Utilize software techniques

o Lightweight synchronization mechanisms
m Especially pserialize(9) and psref(9)

o Existing facilities
m Fast forwarding and ipflow

Forwarding Utilizing Hardware Assists

ZLeast locks]

Rx H/W queues

NIC A

CPUO Tx H/W queues
queue 0 / \ queue 0
queue 1 — Y T queue 1
queue 2 — CPU | ____—¥| queue 2
queue 3 queue 3
\ CPU 3 /

Packets are distributed
by hardware based on

flow (5-tuples)

NIC B

the last

Packets are processed
on a received CPU to

Approach : Development

e Restructure the code first

o Hard to simply apply locks to the existing code
m E.g., hardware interrupt context for Layer 2, cloning/cloned routes, etc.

o Need tests to detect regressions

e ATF tests

o Automated and isolated tests of the network stack
m Thanks to rump kernels

o 320 test cases in total related to networking
m 130 test cases have been added since NetBSD 7

m New categories: IP forwarding, ARP/NDP, IPv6, routes (flags and
messages), bridge, gif, tun, tap, pppoe, ifconfig (commands/options)
o Only 2 minutes to run all the test cases

Approach : Development (cont'd)

e Benchmark often
o Measure speedup
o Measure (single-thread) overheads
e Performance evaluation environments

o Easy to retry tests by anyone else

o Easy to replicate the environment
m Ansible

e ipgen (https://github.coml/iij/ipgen)
o netmap-based packet generator running on FreeBSD
o Support RFC 2544 tests

Current Status

NetBSD’s Goal

Our Goal

3

-current

~_ Planned
work

"~ Our local

changes

—_ Our

contributions

Our Contributions in -current :
Device Drivers

e MSI/MSI-X support
o 1386 and amdo64

e Interrupt distribution / affinity

o intrctl(8) changes interrupt destination CPUs
e MP-safe network device drivers

o wm(4), vioif(4) and vmx(4)
e Hardware multi-queue support of wm(4)

Our Contributions in -current :
Network Components

e MP-safe bridge(4) and gif(4)
e Partial MP-safe Layer 3

o Interfaces, IP address, etc.

e Important restructuring

o Separate ARP/NDP caches from the routing table
m Based on lltable/llentry of FreeBSD

o Softint-based packet Rx processing
m Except for net80211 and bpf(4)

e Lots of ATF tests for the network stack

Check our presentation at AsiaBSDCon 2015 (http://www.netbsd.org/gallery/presentations/)
for details

http://www.netbsd.org/gallery/presentations/

Our Local Changes

e Experimental MP-safe Layer 3 forwarding
e Packet Rx processing optimization

CAVEAT: the changes don’t get
consensus in the community yet and
are not guaranteed to be merged

Planned Work

e Complete MP-ification of Layer 3

o Remaining non MP-safe stuffs: statistic counters,
nd_defrouter, nd_prefix, etc.
e MP-ifications
o vian(4)
o ipsec(4) including opencrypto
o pppoe(4)

MP-safe Layer 3 Forwarding

e [ools

o Hardware assists
o Software techniques

e Changes for MP-safe Layer 3 Forwarding

Tools

e Hardware assists
o NIC hardware multi-queues
o MSI/MSI-X
o Interrupt distribution / affinity
e Software techniques

o Lightweight synchronization
o Fast forwarding and ipflow

Hardware assists

e Recent Ethernet controllers have multiple
hardware queues for packet Tx/Rx

e MSI-X allows to have an interrupt on each
queue

e \We can set an interrupt affinity to a CPU
o Set by device drivers or intrctl(8)

e \We can distribute packets between CPU by

RSS (receive-side scaling)
o Classified by 5-tuples

Interrupt Distributions

Old

Rx queue legacy » CPUO
Tx queue | interrupt

CPU 1

Packet distribution by

hardware assists Rxqueue 0 | msix0 | | cpyo

Txqueue O | vecO

Rx queue 1 msix0
Tx queue 1 vec 1

» CPU 1

Rx queue 2 | msix0
Txqueue 2 | vec?2

—» CPU 2

Rx queue 3 | msix0
Txqueue 3 | vec3 > CPUS3

intrctl(8)

e Enable to change the interrupt affinity
e Support only x86 for now

Example: Direct interrupts of queue 1 to CPU 0

Rx queue 0 | msix0 CPU 0
Tx queue O vec 0

Rx queue 1 msix0
Tx queue 1 vec 1

Rx queue 2 | msix0
Tx queue 2 vec 2

Rx queue 3 | msix0
Txqueue 3 | vec3 > CPUS3

» CPU 1

— CPU 2

intrctl affinity -1 'msix0 vec 1’ -c O

intrctl(8) : Screenshots
intrctl 1list
interrupt id
i0apicO pin 9

msixo
msixe
msixo
msixo
msixo

ver
Vel
vee
vec
V2c

intrctl
intrctl
interrupt
i0apicO pin 9
msix@® vec ©
msix® vec 1
msix® vec 2
msix® vec 3

msix@ vec 4

0
1
.
3
4

atfinity -1
list
id

CPUOG
o*

1696*
7
9
%
2%

'msix® vec 1°

CPU®
Ch
2732*
177*
0
0
2*

=

0

Synchronization Techniques

e pserialize(9) and psref(9)
e An example of pserialize(9)
e An example of psref(9)

pserialize(9) and psref(9)

e Lightweight synchronization primitives

o Sort of deferred processing in the literature
m Cf. RCU of Linux and hazard pointers

o Lightweight read and heavyweight write

e Reader critical sections

o pserialize can be used for those that don’t sleep
o psref can be used for those that may sleep

e \Nriter side

o Both provide a mechanism that waits until readers
release referencing objects

An Example of pserialize(9) : reader

lterate addresses of an interface with pserialize

ifnet

ifaddr

ifaddr

ifaddr

s = pserialize read enter();
I FADDR_READER_FOREACH (i1fa, ifp) {

/* Do something on ifa, which doesn’t sleep */

}

pserialize read exit(s);

An Example of psref(9) : reader

Acquiring a reference of a bridge member entry by psref(9)
on an interaction of the bridge member list

— entry entry entry

s = pserialize read enter();
BRIDGE_IFLIST_READER;FOREACH(bif, sc) {
struct psref psref;

member member member

psref acquire (&psref, &bif->bif psref, bridge psref class);
pserialize read exit(s);

/* Do something may sleep */

s = pserialize read enter();
psref release (&psref, &bif->bif psref, bridge psref class);
}

pserialize read exit(s);

An Example of pserialize(9) and psref(9) :
writer

Remove a member from the list with holding a lock

and wait for readers left

— entry entry entry
BRIDGE LOCK(sc) ;
member member member
BRIDGE IFLIST WRITER FOREACH (bif, sc) {
if (strcmp(bif->bif ifp->if xname, name) == 0)

break;
}
PSLIST WRITER REMOVE (bif, bif next);
pserialize perform(sc->sc_iflist psref.bip psz);
BRIDGE UNLOCK (sc) ;

psref target destroy(&bif->bif psref, bridge psref class);

/* Free bif safely */

Fast Forwarding and ipflow

e Data structures for the routing table
e Fast forwarding
e ipflow

Data Structures for the routing table

e The routing table (backend)

o Radix tree

e rtentry
o Representation of a route

e rtcache

o Caches to reduce looking up a route from the radix

tree
o Per-CPU rtcache for Layer 3 forwarding

Fetch (fast) (rtcache Lookup (slow) ’
L Routing
ey
Lookup (slow)

Fast Forwarding

Normal forwarding Fast forwarding

Use rtcache or
lookup routing table
table table
_ Create _
|-> ip_forward an entry .- | ip_forward |- - -
‘_l - - \

ip_input ip_output'_T T T~ Jp_input /4 ip_output

T l K~ ® Ipflow -
. hash list v

ether _input ether_output ether _input ether_output

1 Y t Y

wmO wm’1 wmO H |f ipflow hit, wm’1
skip Layer 3

ipflow

e Route caches used by fast forwarding

e ipflow is a hash list
o Key: struct ip (source and destination addresses)

o Value: rtcache
e Per-flow rtcaches

o More scalable compared to per-CPU rtcaches for

Layer 3 forwarding

ipflow entry

rtcache

ipflow
___L,'hash o
Calculated
: hash
from struct ip

hash

ipflow entry

rtcache

Changes for MP-safe Layer 3 Forwarding

e Packet Rx/Tx processing and queuing

e MP-safe interfaces and addresses

e MP-safe routing table)

e Scaling up Layer 3 forwarding —Shu;r:;gzl
®

Optimizing packet Rx processing _

Packet Rx/Tx Processing and Queuing

e RX processing mess

o Layer 2 processing including bridge(4), vlan(4), fast
forwarding, bpf(4) run in hardware interrupt context

o Hardware interrupt context is an enemy of MP-ification

m No sleep is allowed
m Only spin mutex can be used

e Softint-based Rx processing

o Run Layer 2 (and above) in softint (per-CPU)
m Except for bpf(4)...

o Interrupt handlers of device drivers just put packets to
a per-CPU queue and schedule softint

Packet Rx/Tx Processing and Queuing

e [X processing
o From Layer 2 to an interface (device driver)

o |f the driver supports hardware multi-queue, the upper
layer just passes packets directly

m If not, it enqueues packets into the traditional if snd queue of the
interface

e T[Xx processing in wm(4)
o wm(4) has multiple queues corresponding to hardware

queues to temporarily store packets passed from the
upper layer

Softint and Queuing on L3 Forwarding

Old Driver L2 L3 L2 Driver
— -] T —
[] Input queue Outputjqueue
] for IP per intdrface
])
| |
H/W interrupt

A

-current
[

|

H/W Rx
queues

Per-cpu queues

Multiple queues H/W Tx
(only wm(4)) queues

MP-safe Interfaces and addresses

e Applied pserialize(9) and psref(9)
e [nterfaces (struct ifnet)
o lterating interfaces with pserialize or psref
o Calling ioctl to an interface with holding psref of it
o revif (*ifp) of mbuf is changed to an interface index
to avoid dangling pointers

e Addresses (struct ifaddr)

o Three data stores for IPv4
m Global list, global hash list and list per interface

o Get an address from either with pserialize or psref

Local J
MP-safe Routing Table changes

e An experimental design of MP-safe routing
table

o Use rwlock

m psz and psref are difficult to apply to the routing table because it's
not a lockless data structure
o Limited scalability

e rwlocks

o A global rwlock for each the backend and rtcaches
o A rwlock for each rtentry

MP-safe Routing Table (cont’'d)

e |[f rtcaches hit:
o No need to hold any writer locks
o Resulting in good scalability
e [f not:
o Performance of Layer 3 forwarding decreases heavily

O It can easily happen because NetBSD has just one

rtcache per CPU in -current
m Multiple flows on one CPU cause contentions on the rtcache

Local
Scaling up Layer 3 Forwarding | changes J

e Reuse ipflow
o Apply ipflow to Layer 3 (normal) forwarding as well as
fast forwarding

e Make ipflow per-CPU

o Apply both normal forwarding and fast forwarding
Include rtcache]

D
Ipflow %

[rtcache }4

Scaling up Layer 3 Forwarding (cont'd)

1

)
Use rtcache or
. Use per-CPU
{Iookup routing table [ipflow it Routing
table et table
|-> ip_forward —l —| ip forward

ip_input ip_output ip_input l/l\ ip_output
Ipflow
hash list
ether _input ether_output ether _input ether_output
wmO wm1 wmO wm1

before after

Local
changes

e An optimization technique of Rx processing
o Inspired by NAPI of Linux and the like
o Also one of DoS/livelock mitigation
e Overview
o Disable interrupts during Rx processing
o No queuing
e Support only for wm(4) for now

Poll Mode

Poll Mode (cont'd)

HW

handler
Interrupt _

- Disable

interrupt

\\‘\5‘:\,‘ Rx queue
Enable || Schedule 1
interrupt softint
[Original]

Interrupt

Softint

Pass to
upper layers

Interrupt

HW Softint
handler
Interrupt _
g Disable
Zf?interrupt
Schedule
softint
g ~ Pass to
Enable upper layers
interrupt QQ\

\/

[Poll Mode]

Softint and Queuing with Poll Mode

-current priver Lo 13 B Srver
- —>> —L _—
l ' A ' ,
H/W interrupt ftint
ours 1 P solm
! J \
—>
—>
- - —>
>
H/W Rx :
queues Multiple queues HW Tx

queues

(only wm(4))

Performance Evaluations : Settings

e Hardware

o DUT (device under test): Supermicro A1SRi-2758F

m 8 core Atom C2758 SoC (2.4 GHz)
m 4 port 1354 Ethernet adapter (each port has 8 TX/RX queues)

o Packet generator box: BPV4 (our product)

m 4 core Atom C2558 SoC (2.4 GHz)
m 4 port 1354 Ethernet adapter (each port has 8 TX/RX queues)

e DUT kernel

o Based on NetBSD-current at 2016-08-24
with our local changes

CAVEAT: the changes are incomplete and resulting
performance would degrade by further developments

Performance Evaluations : Settings

e Targets

o Layer 3 forwarding

o 1,2,4,5and 8 cores
e [ests

o RFC 2544 throughput by ipgen
o UDP/IPv4 packets
o Unidirectional

e Note that packet distributions

o We adjust |IP addresses to distribute packets almost
equally between CPUs

Setups for L3 forwarding Evaluation

L3 forwarding

DUT

|—> forwarding —l

wmO wm1

172.16.0.1/24 A 1172.16.1.1/24

252 flows
I

igh0 igh

172.16.0.2/24 172.16.1.2/24
ipgen

Throughput vs. # of COres : [winout per-cPU ipfiow
. throughputs are around
Normal forwarding 50-60 Mbps
4
1DDD | : - --__________.- =
.-""'x-- -

800 | g
E f’!f;{ ""f*
] g P
= ' s
g o0 e B ‘
2 gl
£ 400 / i

/ -
.-"*ffﬂ
200 B it 64 bytes ——
" 128 bytes ——
E“ \) 256 bytes —
15% 512 bytes
0 ~— ' ' '
0 2 4 6 8 10

number of cores

Throughput vs. # of cores :
Fast forwarding

throughput [Mbps]

1000

800

600

400

200

64 bytes —+—
128 bytes ——
256 bytes
512 bytes

4 6
number of cores

8

10

Summary of Experimental Results

e Frames per second per # of cores
o At 64 bytes

Wire rate

Fast
forwarding

Normal
forwarding

1 core
1,488,095

455,727
30%

224,375
15%

2 cores
1,488,095

688,241
46%

372,022
24%

4 cores
1,488,095

1,190,617
80%

674,290
45%

5 cores
1,488,095

1,460,193
98%

762,646
51%

8 cores
1,488,095

1,488,095
100%

1,078,865
2%

Future Work

e Evaluate with 10 Gbps NICs
e Explore alternatives of the routing table

backend
e Poll mode with either of softint and LWP

o To prevent userland starvation

Backup

Expected Questions

e Q: Why don’t you measure with 10 GbE?
o A: Our 10 GbE aren’t MP-safe yet
o A: Our immediate target is 1 GbE

e Q: Why don’t you use netmap/DPDK if
performance really matters?

o A: Difficult to cooperate with existing tools including
ours for our products

e How do you test MP-safe?

o A: Run ATF with LOCKDEBUG

o Do ioctl repeatedly while applying fluctuating traffic

m If there are bugs, the kernel panic for about 10minitues
m So when the kernel riin combpletelv a few dave it nrobablv ok

Expected Questions

e Q: Why do you use rwlock for the routing table
despite NetBSD has pserialize/psref?

o A: We cannot simply apply serialize/psref to the routing
table

m because the radix tree isn’t a lockless data structure

m because a route can be deleted in softint but pserialize _perform and

psref target destroy cannot be used in softint
e A big restructuring is required

o A:We don’t have a good alternative to the radix tree
yet
o A: We (lIlJ) want to make Layer 3 MP-safe right away

m To MP-ify other components like ipsec(4)

Expected Questions

e Q: What about the overhead of ipflow?

o A: Not trivial (see the next slide)
o A: Hash table size is 64 while there are 31 flows

The Case of qgif(4)

e \What's gif?
o A generic tunneling pseudo device
o |Pv[46] over IPv[46]

e Why qif?
o It's a good first step prior to other complex tunneling
facilities
m Qif(4) is a very basic tunneling device

o It uses a common IP tunneling utility, ip_encap
m ip_encap is used by ipsec(4)

’ The objects can be freed)
at anytime in packet

gif(4) and ip_encap processing using
ﬁ%ncaptab list
encap_table (pslist(9))

@ D—D e.g. stf_softc list

gif _softc_list —D rl \ gif _softc list
¥ <

Reader processing The objects can be freed

at anytime in gif(4)
1. lterate on the encap_table packet processing
o Find the highest priority struct encap \.

2. Get a qif(4) softc

o On receiving a packet
o Not iterate gif softc_list in fast path

gif(4) to gif(4) Forwarding
Old

Driver L2 outer L3 inner L3 outer L3

L2

Driver

for gi for | for gif

Inputiqueue Inququeue OutFutqueue

>

Outpuf queue

per int

arface

\) J\ J\

H/W interrupt softintA SoftintB

A A

\
softint C

| \f

per-CP
queues

Outpuf queue

per int

arface

-current + our local changes

Setups for gif(4) Evaluation

DUT gif0 gif0 DUT2
forwarding ™ g|.f1 g|.f1 forwarding
* \ gif7 gif7 *
wmO wm1
172.16.0.1/16 e|ght alias addresses 172.16.1.1/16
for each gif
8 flows
172.16.0.2/16 l 172.16.1.2/16
-| igb0 igb1
Adjustment J J

o 1 qif(4) per 1 CPU

o 1 flow per 1 gif(4)

ipgen

Throughput vs. # of cores : gif(4)

throughput [Mbps]

1000

800

600

400

200

number of cores

- H _d_s"’”.-+
it
|— _-f-
.-ﬂ-d—
- _a—'ff
___.-"':f.f.. __ﬁ
.-""..-. "'fﬂ-
B ot 64 bytes ——
e e 128 bytes ——
- 256 bytes
.y—\ | | 51? b}“tEE
9%
0 "/ 4 6 : 10

Overhead Of |pﬂOW

thl‘ﬂughplﬂ [Mbps]

1000

800

600

400

200

1 flow per CPU w/o ipflow
(i.e., per-CPU rtcache)

64 bytes ——
128 b}"tEE e
256 bytes
512 bytes

.-""H--_------ '
.-".-'.-".-"'"' 85%
,,.o-""'-+
-__-F-_'_/-/fﬂf

e

4 E :
number of cores

10

Summary of Experimental Results with 5

Ccores

e Frames per second per # of cores
o at 64 bytes

Wire rate

bridge(4)

Fast
forwarding

Normal
forwarding

gif(4)

1 core

1,488,095

381,322
25%

455,727
30%

224,375
15%

138,492
9%

2 cores

1,488,095

613,837
41%

688,241
46%

372,022
24%

242,251
16%

4 cores

1,488,095

1,191,634
80%

1,190,617
80%

674,290
45%

425,502
28%

5 cores

1,488,095

1,488,095
100%

1,460,193
98%

762,646
51%

8 cores

1,488,095

1,488,095
100%

1,488,095
100%

1,078,865
2%

772,528
51%

Dangling Pointers on struct ifnet

e Many structures have a pointer of an ifnet (ifp)
e In the MP-safe world, *ifp can be freed
e Solution

o Replace a pointer with an interface index and get ifp

from the interface database
m With pserialize(9) or psref(9)
m It adds some overhead

e Structures we needed the change

o mbuf (recvif)
m Need to gain a reference of ifp on ip_input

o ip_moptions, ip6 _moptions

Dangling Pointers on struct ifnet (cont'd)

e A case when an interface pointer is always
valid

o If an object having ifp always lives shorter than the
ifnet object, we can assume that *ifp is always valid

o |OW, if an referencing object is destroyed on ifnet

destruction, *ifp is always valid

o Examples of this case
m rtentry->rt_ifp
m rtentry->rt_ifa (struct ifaddr)

