
Bulk building in the many core era

Jörg Sonnenberger ⟨joerg@NetBSD.org⟩

February 4, 2017

Abstract

pbulk, the current generation of the pkgsrc bulk
build infrastructure, was created during the GSoC
2007 and remained mostly unchanged. Increased
processing power, affordable parallelization, signif-
icantly more RAM and SSDs for storage have all
changed the environment. This paper investigates
different configuration choices and their perfor-
mance and management impact. The current de-
velopment towards looser coupling between clients
and the build master are presented as well as the
necessary changes for a secure integration of pack-
age signatures. The impact of the changes is quan-
tified for different native and virtualised setups.
The measurements are used to identify improve-
ments for the NetBSD kernel and pkgsrc.

1 Introduction

The pbulk framework for bulk building was cre-
ated during the GSoC 2007 to address a number
of concerns with the old bulk build infrastructure,
including:

• No support for building different packages con-
currently on the same machine.

• No support for distributing the build across
multiple machines.

• Difficult to debug build problems due to par-
tial cleanup between builds.

• Inconsistent rules for when a package has to
be rebuilt due to dependency changes.

• Inconsistent handling of redistribution of prob-
lematic packages.

As a result both performance and correctness issues
have been the major design guide lines for pbulk,
with a general preference for the latter.

In the past decade, the computing environment
for bulk building has changed significantly. The
disk I/O associated with preparing and tearing
down the per-package build environment has al-
ways been a major time factor, but the recent avail-
ability of multiple GB RAM per core and SSDs as
backing store has shifted the hot spots to other ar-
eas.

The budget requirements for a bulk build run-
ning entirely in RAM would have required at least
a five digit budget per machine; today typical off-
the-shelf dedicated servers in the mid-price range
already fit the bill. If a build node had two sockets
with a dual core CPU a decade ago, they would
now have one or two sockets with eight to sixteen
cores each.

Exploiting the available resources efficiently as
well as building cost effective systems requires
greater care than before. This paper investigates
the build time of several natural system configura-
tions. Based on the initial findings, a number of
less obvious refinements are compared in order to
mitigate severe contention issues. The results pin
point issues as well as provide estimations for per-
formance gains from future fixes.

The paper starts with an overview of the pbulk
framework and how it extends to a build cluster.
Benchmarks for builds of NetBSD/AMD64 follow
with configurations ranging from native NetBSD
over para-virtualised NetBSD under Xen to fully
virtualised configurations under Xen and SmartOS.
Finally, the on-going work is presented.

1

2 Design overview for pbulk

The pbulk framework separates the build into four
different phases:

1. Build preparation

2. Tree scanning

3. Package building

4. Post-processing, reporting and uploading

The first phase prepares everything for the new
bulk build. This includes the removal of leftovers
from earlier builds. Depending on the specific
setup, it can also be used to create chroots, spin
up virtual machines or synchronize pkgsrc trees.
The second phase is responsible for determining

the list of packages and their dependencies. The
tree scanning exists in two variations: partial and
complete tree. The former option is typically used
when packages for a specific set of machines are
needed. The user provides a list of directories that
should be built and the scan process will iteratively
add dependencies as necessary. For the complete
tree, a list of all directories is extracted from the
top and second level Makefiles and then processed.
While processes similar to the tree scanning can

be found in build systems other than pkgsrc, it
is normally much easier. Dependencies in pkgsrc
are often not specified in the main Makefile, but
distributed across a tree of included buildlink3.mk
files. Since pkgsrc supports picking base system de-
pendencies on various platforms, additional compu-
tations are often needed. If a package like devel/c-
make wants to use the Curses library, pkgsrc has
to check if the base system provides a compatible
implementation. If it finds one, no additional de-
pendency has to be installed, otherwise a fallback
to devel/ncurses is added. Other complications are
optional features in one package changing the be-
havior of dependees, like the list of visible headers
and libraries.
To mitigate the overhead of the build option

extraction, pkgsrc recently gained an option1 for
caching the result of those build option extractions.
For a typical bulk build, this reduces the time spent
in the second phase by 50%. For a complete from-
scratch bulk build without reusing earlier packages,

1Added 2016-12-18, set PBULK CACHE DIRECTORY
in mk.conf and create/empty it in the preparation step.

the scan phase is responsible for approx. 5% of the
total build time. For incremental builds e.g. on a
quarterly branch, few rebuilds are typically neces-
sary and the scan phase can dominate the total
build time. The scan time can be further reduced
in those situations by enabling reuse of old scan re-
sults2. This will skip the extraction if Makefile (or
any of the files included by it) has a newer mod-
ification time than the scan result from the last
run. This option is not enabled by default as it can
give false results if the base system or the build
configuration changes. As such, it requires manual
intervention from the user to clean the stale files in
those situations.

After the extraction of the packages and their
dependencies, precise dependencies according to
the rules pkg add uses during installation are com-
puted. This means that discrepancies between scan
and build phase show up as errors due to missing
dependencies in the latter phase. Some diagnos-
tic data is also provided for maintainers, e.g. if the
preferred dependency is not found in the expected
location. This can happen when packages share the
same name root like PHP versions, but also when
alternative patterns are used (e.g. to depend on ei-
ther an OSS or ALSA plug-in to be installed).
One important consideration for the scan phase

is that it is effectively read-only. No packages have
to be installed and no temporary files in the build
area are created. This allows sharing the same vir-
tual machine or chroot with multiple scan jobs. As
the memory requirements per scan jobs are also
very moderate, it is easy to run one scan job per
core.
The third phase is responsible for building the

individual binary packages. A build job in a vir-
tual machine or chroot will first decide whether a
pre-existing binary package is good enough to be
reused. This check normally includes:

• The exact dependencies for the current build
match the state of the old build.

• The recorded RCS IDs of important files like
the main Makefile or distinfo match the state
of the pkgsrc tree.

• The binary package is newer the packages it
requires.

2Added 2012-11-23, set reuse scan results to yes in
pbulk.conf.

2

If all checks pass, no further work is necessary. If
there is no pre-existing binary package or it is con-
sidered out-dated, a full package build is started.
The build job will first tear down the package pre-
fix (e.g. /usr/pkg per default on NetBSD).
The actual build processes in stages:

1. pre-cleanup

2. installation of listed dependencies

3. fetching distribution sources and patches and
matching the checksums against distinfo

4. configuration

5. build

6. installation to staging directory

7. creation of binary package

8. test installation

The output of the stages is logged separate for eas-
ier debugging and preserved for failing builds. De-
pending on the result, either a fresh binary package
exists or build log for the problems. After notifying
the build scheduler, the next build is executed.
The fourth and final phase is responsible for

building the SHA512 index over all packages as well
as uploading the results (if applicable) and provid-
ing a human and machine readable report.
Both scan phase and build phase provide a ba-

sic scheduler mode to process jobs sequentially
from an integrated client. This mode is function-
ally very similar to the previous generation of the
bulk build system. It is reasonable when doing a
small set of packages or when operating on con-
strained hardware (e.g. with only one or two cores).
Pre-populating a local copy of distribution sources
should still be considered to avoid the delays from
fetching during the build from the internet.
Alternatively, scan and build jobs can run in par-

allel in their respective phase, either across a differ-
ent chroots or across different (virtual) machines.
The framework provides a pull-based scheduler. A
hook is provided to execute a script after the mas-
ter process is ready and this in turn will start the
scan or build clients via chroot3 or ssh. Additional

3Added 2016-12-18, by specifying an absolute path as
client in pbulk.conf.

clients can be added on-demand. The protocol cur-
rently provides no mechanism to restart a failed
build of an individual package, even if it is a side
effect of a machine crash.

3 Build cluster infrastructure

The pbulk framework depends on a number of
shared resources for efficient builds:

• distribution files and patches,

• logs for failing builds,

• binary packages and

• the pkgsrc tree itself.

The past recommendation for bulk builders was
to use shared file systems like null mounts or NFS.
While this works reasonably, it is also regular a
source of headaches in some cases. For the distri-
bution files, if two build jobs try to fetch the same
file at the same time, they can stumble across each
other, making one of them fail. As the build or-
der of variant packages like Python modules tend
to schedule different variants of the same module
near each other, this has been a regular problem.
In the case of the log directory on the other hand,
NFS is known to create build failures when inter-
mediate file operations fail like attempt at locking.
This section includes a new set of recommenda-

tions based on those experiences.

3.1 Distribution files and patches

For a single machine build, having a local directory
null mounted into each build chroot is still a reason-
able low-overhead option. The danger of the occa-
sional failures has been mentioned. Sharing across
machines with NFS is no longer recommended.
A scalable and reliable mechanism is to use a lo-

cal mirror with automatic upload of new files. For
this purpose, MASTER SITE OVERRIDE should
point to the local HTTP or HTTPS server. It
can run on the same machine as the build mas-
ter, but any other local server works as well. The
second part of the puzzle is POST FETCH HOOK,
a script that is called with path of the newly ob-
tained file and the URL the file was obtained from.
The author uses WebDAV for uploading new files,

3

as requires less configuration than sftp or scp only
SSH upload. An example script can be found
in listing 18. Finally, DISTDIR can be set to
$WRKDIR/.distdir, so that files are removed au-
tomatically once the build job is finished. In this
case, use unprivileged checksum4 should be set to
‘yes‘ in pbulk.conf as well.

Some package have distribution files which can’t
be obtained automatically. A typical example is
the EULA for Oracle’s JRE and JDK builds. If
the user uploads those files to the local mirror by
hand, the IGNORE INTERACTIVE FETCH op-
tion can be used to skip the check, so that MAS-
TER SITE OVERRIDE is actually tried.

3.2 Build logs

Similar to distribution files, having a directory null
mounted into each build chroot is reasonable for
single-machine builds. The file system is primary
modified by appending to files, so lock contention
not a big factor. For cross-machine machine builds,
it is recommended to use either scp/sftp based
uploads or WebDAV. NFS comes with a notice-
able performance penalty and the earlier mentioned
mysterious error cases. The sync buildlog option5

in pbulk.conf can be pointed to either a shell script
or function to provide the necessary functionality.
An example can be found in listing 7.

The long-term plan is to integrate the upload-
ing of the build logs into pbulk itself to reduce the
number of moving parts.

3.3 Binary packages

The constraints for binary packages are a bit dif-
ferent. Unlike build logs or distribution files, the
binary packages are accessed directly as part of the
check for skipping rebuilds. It is difficult to re-
produce this logic for packaged served via HTTPS.
As such, a shared file system like NFS is unavoid-
able for the cluster case. Since the check uses time
stamps, use of NTP is strongly recommended for
all build machines.

It is possible to use a read-only NFS file system
in combination with the sync package option6 in

4Added 2015-09-08
5Added 2015-09-13
6Added 2015-09-13

pbulk.conf. The primary use case is allowing pack-
age signing from a separate environment, so that
keying material is never accessible to the builds.
The basic approach is illustrated by listing 10, but
the given script shouldn’t be used in production
due to the obvious security concerns.
The long-term plan is to ingrate the uploading

into the pbulk protocol to reduce the number of
moving parts as well as to allow tighter constraints
on the package content. The build master knows
the package that is supposed to be signed and can
detect fancy attempts for creating signed core pack-
ages when a minor source has been trojaned. This
has been deferred until the infrastructure side for
multi-package builds (e.g. one build creating multi-
ple sub-packages) has been resolved. The work was
started by Leonardo Taccari’s GSoC 2016 project.

3.4 Sharing of the pkgsrc tree

The pkgsrc tree is read-only during the build and
especially during the scan phase highly contended.
The combination of those properties make it attrac-
tive to distribute a copy to all build nodes e.g. via
rsync in the first phase of the build. Even for disk-
less clients like building on small ARM boards, it is
often better to have a copy of the pkgsrc tree on a
local file system over iSCSI compared to plain NFS,
since NFS provides only limited caching. Multi-
ple scan/build jobs on a single node can share the
same copy via null mounts. No noticeable lock con-
tention has been observed on NetBSD at this point
for shared pkgsrc trees. The client prepare chroot
and client prepare action options7 can be used for
this purpose.

4 Comparative benchmarks of
different configurations

In this section, different configurations will be eval-
uated for a whole tree from-scratch bulk build.
Common base configuration is a NetBSD current
on AMD64 from mid-2016 with clang as system
compiler. Some of the Xen and SmartOS based
tests use a newer kernel from around November
2016 for technical reasons, but it is believed to
not have any significant impact on the build times.

7Added 2016-12-18

4

Run nullfs root tmpfs root Difference
scan total scan total scan total

1 97 2667 102 2111
2 113 2862 119 2211
3 112 2862 98 2211
Avg 107 2797 106 2178 -1% -22%
σ 4.2 53 5.3 27.2

Figure 1: Scan and total build time (in minutes)
for nullfs root vs tmpfs root

A number of serializing packages are explicitly
marked as broken like math/openaxiom, as they
would skew numbers artificially

Test platform is a dual Intel Xeon E5-2630v3
with 64GB RAM and SSD for persistent storage.
Hyper-threading is active. Persistent file systems
use FFS with WAPBL enabled. MAKE JOBS is
set to 16, developer checks are enabled. The use of
cwrappers is enabled as well.

All distribution files are served by a HTTP server
in the local network, connected by Gigabit Ether-
net. Build logs are pushed via rsync similar to list-
ing 7. Packages are written directly to nullfs or
NFS (for multi-VM configurations). The state of
the pkgsrc tree is identical across all builds. Para-
virtualised Xen builds have a couple of additional
failures related to Emacs, but this is believed to be
a minor impact.

4.1 Base line with native kernel

The original configuration used a FFS file system
for the root template of the chroots. Each chroot
has a read-only null mount of this root template
with tmpfs instances mounted over it for /etc, /var,
/tmp, /usr/pkg and the work area. Eight chroots
are used for build jobs and each chroot played host
to four scan jobs. Two additional chroots are pro-
visioned for the build master and potential testing,
but are otherwise not used during the builds.

Investigations of lockstat output suggested a high
contention of the vnode for the top level of the
root template. This lead to the first variation with
a read-only tmpfs copy of the root template for
every chroot. Root template contains the ‘base’,
‘comp’, ‘etc’, ‘games’, ‘misc’ and ‘text’ sets with
small pruning by removing the lib* pic.a files which

are not relevant for package builds. The resulting
tmpfs requires 518MB per chroot.

Timing results can be found in figure 1. The dif-
ference in the scan time is within the noise. This
was unexpected as the scan phase normally hits
the file system and memory subsystem much more
often due to the high fork/exec rate. An easy ex-
planation like “the scan phase is read-only” doesn’t
work as the file system itself is read-only in both
cases. The lock protocol for nullfs clearly needs to
be investigated.

The tmpfs root numbers will be used as base line
for all further comparisons

4.2 Para-virtualisation with Xen

The first alternative to running NetBSD on bare-
metal hardware is para-virtualisation with Xen.
This is used on the build cluster of The NetBSD
Foundation for the official bulk builds, so the over-
head here is direct interest. The reference config-
uration is a NetBSD DOM0 configured with 1GB
RAM running under Xen 4.6.3 as hyper-visor In
the single DOMU case, one NetBSD guest is using
the remaining 62GB RAM and 31 cores. For the
four DOMUs case, all DOMUs have 15GB RAM
assigned and eight cores, except one DOMU with
only seven cores.

Timing results can be found in figure 2. The
single DOMU case was expected from unpublished
benchmarks by the author in the 2007-2008 time
frame. The real surprise was the four DOMUs case
though. An investigation with lockstat showed a
very high contention on the page queues. When
splitting the system, this contention has cut down
significantly and compensates for the system call
and context switch overhead of Xen. Since this
overhead is still present in the four DOMUs num-
bers, they provide a good lower bound for the ex-
pected gains from more granular page queue lock-
ing.

4.3 Full virtualised builds with Xen-
HVM and SmartOS-KVM

The reference configuration for Xen-HVM uses a
NetBSD DOM0 configured with 1GB RAM and
a four HVM guests with 15GB RAM each. The
hyper-visor is Xen 4.6.3. The guests all have eight

5

Run Base line 1 DOMU Difference 4 DOMUs Difference
scan total scan total scan total scan total scan total

1 102 2111 185 2897 34 1917
2 119 2211 188 2894 33 1913
3 98 2211 186 2909 33 1909
Avg 106 2178 186.3 2900 +75% +33% 33 1913 -69% -12%
σ 4.2 53 0.72 3.7 0.27 1.9

Figure 2: Scan and total build time (in minutes) for base line vs 1 DOMU vs 4 DOMUs

Run Base line Xen-HVM Difference SmartOS KVM Difference
scan total scan total scan total scan total scan total

1 102 2111 39 2880 35 2721
2 119 2211 36 2748 48 2727
3 98 2211 38 2927 43 2774
Avg 106 2178 38 2852 -65% +31% 42 2741 -61% +26%
σ 4.2 53 0.72 44 3.1 14

Figure 3: Scan and total build time (in minutes) for base line vs Xen-HVM vs SmartOS KVM

cores assigned each, except one with only seven
cores.

In the SmartOS case, the KVM guests were as-
signed 14GB each. A stable build was not possible
with 4GB RAM reserved for the SmartOS kernel,
even with manual tuning to limit the size of the
ARC buffer. NetBSD uses virtio for both disk and
network I/O under KVM.

Timing results can be found in figure 3. The
scan time results can be readily explained by the
page queue contention as discussed in the last sec-
tion. Both systems have comparable results with
SmartOS winning over all. The differences can
likely be attributed to optimizations in the page
table trapping or context switching, but has not
been analyzed in detail. The cost of complex de-
vice emulation vs the simpler virtio protocols is
a factor that may favor SmartOS for the longer
builds though. The virtualisation overhead on sixth
generation Xeons with Extended Page Tables and
other features is significantly lower compared to the
third generation Xeons, where a bulk build took
over 100% longer in Xen-HVM compared to native.

5 Work in progress

There are currently five on-going projects for the
pbulk framework:

1. Integration of a better process monitor for
BSD systems

2. Rebuilding the storage mechanism by moving
to SQLite

3. Extending the communication protocol to al-
low retrying failed individual builds.

4. Extending the communication protocol to sep-
arate up-to-date check and build jobs.

5. Investigate metrics for resource consumption
and build load for improved scheduling.

Long-term a move to a new HTTP(S)-based com-
munication protocol is planned, but no details exist
yet.

5.1 Process monitoring with kqueue

Build jobs sometimes hang for a long time. There
are two common problematic situations:

6

1. Infinite loops resulting in wasted CPU time.

2. Dead locks and other conditions where no
progress is made.

The first category can be solved easily with process
limits on the CPU time, but this doesn’t work for
processes that wait for a very long time on events
that might not never happen. Regular occurrences
with pkgsrc are Qt’s MOC with bugs in the process
cleanup, Mono with internal dead locks or the job
accounting problems in GNU make 4.2.1.
The author has created a new process monitor for

this purpose. It uses the kqueue event notification
system to listen for process creation and termina-
tion. If no process is created within a given time
period, the job is considered to hang. It can also
specify a fixed hard limit for the total time a job is
allowed to take.
As a side effect of monitoring the process tree,

it can also detect leftover process. At least one
package in the pkgsrc tree is known to leak ‘bonobo-
activation’ instances, but it is not yet known which.
The processor monitor would allow hunting for this
kind of garbage.
The tool is currently tested internally and will

be published after some more polishing. It should
work on all systems with a kqueue implementa-
tion, assuming the kernel implementation works
correctly.

5.2 Moving towards SQLite storage

When pbulk was originally written in 2007, only
the old Berkeley Database 1.85 was used by pkgsrc
infrastructure. Experience with SQLite at the time
was too limited for taking it into consideration. As
a consequence pbulk is using flat files in append-
only mode. After crashes, manual cleanup was of-
ten necessary to resume a build and code flexibility
was also limited.
Since then, SQLite has seen use in different

NetBSD and pkgsrc related projects:

• NetBSD’s apropos uses the Full Text Search of
SQLite.

• The repository mirror of NetBSD’s CVS tree
for Fossil and Git depend on SQLite for storage
and query logic.

• The pkgin front-end depends on it.

Switching pbulk to using SQLite allows further
developer and simplifies improvements to the data
model. When the scan phase was extended to allow
reusing old results, it had the side effect of increas-
ing the data volume by a factor of six. This directly
affects the memory requirement accordingly. Nor-
malization would avoid most of the overhead.

5.3 Protocol extensions for retrying
individual builds

The build scheduling is currently a one-way street.
Every package is scheduled for build at some point
after its dependencies are built successfully. The
build status is appended to one of two files (error
or success). This makes it difficult to provide a
mechanism for developers to say “I fixed foo-1.2,
try again please”. The only way is currently to
stop the build, edit the error file by hand and then
restart the build. As this doesn’t magically stop
current builds and those can take a long time to
finish, it is clearly suboptimal. With the new stor-
age backed, it is much easier to extend the commu-
nication protocol with an option for rescheduling a
failing package or just doing the manipulation di-
rectly in a way that it will be picked up on the next
decision point.

5.4 Up-to-date-check nodes

As detailed in section 3.3 pbulk checks whether bi-
nary packages can be reused or not. For this check
direct access to the binary packages is necessary
and this is the only part of a bulk build still de-
pending on shared file systems.

Three possible solutions exist:

1. Rewrite the check to deal with protocols like
HTTP.

2. Move the check into the build master.

3. Create a new set of jobs that can be run from
the machine hosting the packages.

The first option is somewhat difficult as it requires
a custom client code and the protocol is not that
friendly towards such time checks. The second op-
tion has been considered, but the build master cur-
rently needs no access to the actual pkgsrc tree and
it would be detrimental to change that back. This

7

leaves the last option of splitting the build jobs into
two parts. This requires extending the protocol to
support three different clients: build-only, check-
only, combined build and check. That’s a mod-
erately small change. The master needs to keep
track of a second to-do list and some additional
book keeping. Overall, this is the most promising
approach.

5.5 Tracing resource consumption

From a theoretical perspective, an optimal build
scheduling should take the availability of restricted
resources and optimize the job scheduling to min-
imize the target function (here: the total build
time). For bulk builds, CPU and total build time,
concurrency, memory requirements and volume of
disk I/O are all possible factors for the build time.
The prediction of the interaction of multiple builds
on the same machine is highly complicated. During
the configure phase, many package will utilize only
a single core and little memory. During the build
phase, many cores can be used, but compiler and
linker can require a lot of memory for a single task.
The installation phase, but also linking of debug
builds, can create a lot of disk I/O. For a bulk build,
many of those interactions will even out towards a
mean. From regular observations of bulk builds one
pattern for improvement is obvious: avoiding build-
ing of large packages near the end. This normally
happens naturally as some very large packages like
LibreOffice are not necessary for building anything
else. Building a database of at least the total CPU
time, the wall time and the peak RSS would allow
making better decisions. Some of those measure-
ments can be obtained easily. The move towards
SQLite will also simplify integration of such data.

6 Summary and outlook

The paper presented modern recommendations for
configuring bulk builds for pkgsrc with a focus on
NetBSD. While some of the details will differ on
other operating systems, the core tenets remains.
Real-world performance tests have shown clear

scalability issues in NetBSD. Para-virtualisation
can provide a 10% boost to the over-all build time
on the tested hardware. It is expected that the
benefit grows for systems with even more cores.

Full virtualised solutions like Xen-HVM and
KVM on SmartOS have been shown to have a rea-
sonable overhead of 25% to 30% on Haswell Xeons,
compared to native NetBSD builds. This shows
that cloud-based bulk builds are technically feasi-
ble without wasting too much in terms of resource
utilization The missing cooperation between guest
OS and hyper-visor clearly comes at a significant
price.
The integration of better process monitoring

tools for the build is an on-going project. The
pbulk framework will see changes to its communica-
tion protocol and storage mechanisms in the near
future. This will ease the deployment on smaller
machines and improve the experience for develop-
ers.

8

#!/ bin / sh
mirror=d i s t f i l e s . example . com

case ”$2” in
https : // ${mirror }/∗)

; ;
∗)

cace r t . pem i s not in the d e f a u l t search path .
Pick password from d i s t f i l e n e t r c , i . e . in the form :
machine d i s t f i l e s . example . com
l o g i n myuser
password mysecret
/pbulk/bin / cu r l −T ”$1” \

−−ca c e r t /pbulk/ share /moz i l la−r o o t c e r t s / ca c e r t . pem \
−−netrc− f i l e /pbulk/ e t c / d i s t f i l e n e t r c \
” https : // ${mirror }/$1” ; ;

esac

Listing 1: Sample upload script

push bu i ld l og () {
Don’ t depend on rsync in PATH
/pbulk/bin / rsync −−rsync−path /pbulk/bin / rsync \

−−de l e t e −−arch ive −e ssh ”$1/$2” ${master ip } : $1/
}
s yn c bu i l d l o g=push bu i ld l og

Listing 2: pbulk.conf fragment for build logs

push package () {
ssh ${master ip } mkdir −p /packages /Al l
scp ”$1” ${master ip } : / tmp/${pkgname}${ pkg sufx } . tmp
ssh ${master ip } /pbulk/ sb in /pkg admin gpg−s ign−package \

/tmp/${pkgname}${ pkg sufx } \
/packages /Al l /${pkgname}${ pkg sufx }

ssh ${master ip } rm /tmp/${pkgname}${ pkg sufx }
}
sync package=push package

Listing 3: Insecure proof of concept for signing package remotely

9

