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Abstract 
This paper discusses the project     

‘Implementation of Ext4 and Ext3 Read Support for        
NetBSD kernel’ done as a part of Google Summer of          
Code 2016. The objective of this project was to add          
the support of Ext3 and Ext4 filesystem features viz.,         
Ext4 Extents and Ext3 HTree DIR in read only mode          
by extending the code of existing Ext2fs       
implementation in NetBSD kernel,.  

1  Introduction 
The fourth extended file systems or Ext4 as it is          
commonly known, is the default filesystem of many        
Linux distributions. Ext4 is the enhancement of Ext3        
and Ext2 filesystems which brought improved      
efficiency and more reliability. In many ways, Ext4 is         
a deeper improvement over Ext3, as it introduces a         
number of new features like Extent support, delayed        
allocation and many more. 

Traditionally, in NetBSD, Ext2 is the base       
filesystem and some features from Ext3 and Ext4 are         
supported. However, there has been lack of support        
of main features of Ext3 and Ext4 filesystems in         
NetBSD. In machines running NetBSD, dual booted       
with other OS supporting Ext4 filesystem, getting       
access to Ext4 files through NetBSD, is a primary         
need. Read-only support of Ext4 filesystem in       
NetBSD is also important for further evolution of        
Ext4 into full read-write support. 

Earlier Ext2 and Ext3 had the limitation on        
the size of the file. They used 32 bit block number to            
access the data blocks. So, that limited the maximum         
size of file to be 2^32 * block size(eg. 4kb) = 16TB.            
Despite this Ext4 filesystem supports very large files        
as it has 48 bits to address a block. The access time            
for such large files on following traditional indirect        
block pointer approach is significantly high, because       

accessing a data block involves lots of indirection.        
Ext4 Extent provides a more efficient way of        
indexing file data blocks which especially reduces       
access time of large files by allocating contiguous        
disk blocks for the file data.  

The directory operations (create, open or      
delete) in Ext2fs requires a linear search of an entire          
directory file. This results in a quadratically       
increasing cost of operating on all the files of a          
directory, as the number of files in the directory         
increases. The HTree directory indexing extension      
added in Ext3fs, addresses this issue and reduces        
the respective operating cost to nlog(n).  

This project added these two features in the        
NetBSD kernel. The project was started with the        
implementation of Ext4 Extent in read-only mode       
and then the next feature Ext3 Htree DIR read         
support was implemented. 

2  Ext4 Extents 

As mentioned earlier Extent block mapping      
is an efficient approach of mapping logical to        
physical blocks for large contiguous files. But before        
understanding the Extents, let’s try to understand the        
traditional indirect block mapping approach used in       
Ext2/3 filesystems, for indexing the file data blocks. 

2.1  Indirect Block Mapping 

The information for the data blocks of a file          
is stored in the i_data field of the inode structure. The           
first 12 entries of i_data contain the block numbers of          
the first 12 data blocks of the file. Then it contains           
the block number for the Indirect blocks. That block         
contains the array of block numbers which point to         
the data. Similarly, there is double indirect block and         
triple indirect block (figure 1).  

So if we need to get the data from a very           
large file, we need to go through those indirections. 
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Figure 1  Indirect block mapping 

 

2.2   Extent 

In extent based block mapping, the i_data of        
inode contains Extent structures [4]. There is a extent         
header, Extent and Extent index.  

The Extent is implemented as a B+ Tree,        
with a disk block allocated for each node in the tree           
except for the root node. All nodes contain a header          
and either extent structures or extent index       
structures(Table 1). Specifically the leaf nodes have       
the Extent structure and others nodes have Extent        
Index Structure. The header contains the number of        
valid entries in the node, the capacity of entries the          
node can store, the depth of the tree, and a magic           
number. The magic number can be used to        
differentiate between different versions of extents, as       
new enhancements are made to the feature, such as         
increasing to 64-bit block numbers. 

The Extent struct is a single descriptor        
which represents a range of contiguous physical       
blocks (Figure 2). The physical block field in an         
extents structure takes 48 bits. A single extent can         
represent 215 contiguous blocks, or 128 MB, with 4         
KB block size. The MSB of the extent length is used           
to flag uninitialized extents, used for the preallocation        
feature. The extent index structures are used for non         
leaf nodes. It contains the block number of the block          
where next level of nodes are stored. The logic can be           
described by the following figure 2. Four extents can         
be stored in the ext4 inode structure directly. This         
is generally sufficient to represent small or       
contiguous files. For very large, highly      
fragmented, or sparse files, new blocks with extent        
index structures are used. In this case a constant         
depth extent tree is used to store the extents map of           
a file.  

 



 

ext4_extent_idx 

 ei_blk         /* indexes logical blocks */ 
 ei_leaf_lo     /* points to physical block of the 

 * next level */ 
 ei_leaf_hi     /* high 16 bits of physical block */ 
 ei_unused 

Table 1 (a) Extent Index Structure 

ext4_extent_header 

eh_magic           /* magic number: 0xf30a */ 
eh_ecount          /* number of valid entries */ 
eh_max              /* capacity of store in entries */ 
eh_depth            /* the depth of extent tree */ 
eh_gen               /* generation of extent tree */ 

Table 1(b)  Extent Header Structure  

ext4_extent 

e_blk        /*first logical block */ 
e_len            /* number of blocks */ 
e_start_hi     /* high 16 bits of physical block*/ 
e_start_lo     /* low 32 bits of physical block */ 

Table 1 (c) Extent tree extent structures 

Figure 2 shows the layout of the extents        
tree. The root of this tree is stored in the ext4 inode            
structure and extents are stored in the leaf nodes of          
the tree.  

2.3  Extent Tree Traversals 

In the read operation for the requested data        
of a file having Extent tree as an index for file data            
blocks, getting the map of logical block number to         
physical block number is a crucial step. To map file’s          
logical block number to corresponding disk block       
number, one needs to travel Extent tree beginning        
from the root stored in the i_data field of the inode.           
The header field ‘eh_ecount’ in each node gives the         
number of children of current node as each extent         
index contains a pointer to a child node. The nodes in           
next level of the Extent tree may further be non leaf           
nodes. All the nodes in the deepest (leaf) level of the           
tree contain extent structs which represent a chunk of         
contiguous file data blocks. All the indices in a node          
are sorted according to ‘ei_blk’ value in the index,         
hence binary search is used in block search        
algorithms [11]. 

             
Figure 2 A typical extent tree 

 



 

To find a physical block number      
corresponding to a file logical block, Extent tree is         
traversed from top to bottom in the direction of the          
extent index with ‘ei_blk’ value just less than or         
equal to the target hash value at each level. At the           
leaf level, nearest extent is found in the same manner          
which contains the pointer to the contiguous physical        
blocks. During tree traversal, path is stored into an         
array which represents the exact path of a disk block          
corresponding to file logical block. 

3    UBC Interface  in NetBSD 
Previous section gives an overview of extent       

structs and process of getting physical block       
corresponding to target file block. The core logic of         
the extent remains same irrespective of the       
underlying filesystem and OS. There already exists       
a number of extent map implementations for the file         
data block indexing. For example, in FreeBSD,       
Extent read support had already been implemented.       
Needless to say, the reimplementation of Extent       
core-logic was not a challenge here, the challenge        
was to deal with different standards of both kernel         

and to figure out how FreeBSD’s extent       
implementation fit the NetBSD kernel without the       
need of much modifications. So let’s understand the        
difference in VFS interfaces in the two kernels,        
FreeBSD and NetBSD. The major differences in the        
VFS layer of both the kernels are due to having          
different strategies to approach the Double Cache       
Problem [12]. This section, describes the Double       
Cache Problem and UBC interface which addresses       
this problem in NetBSD. We will also look at         
FreeBSD’s strategy to address this problem. 

3.1  Double Cache Problem 

There are two mechanisms to access      
filesystem data. One is memory mapping and the        
other is I/O system calls such as read() and write().          
These two mechanisms are handled by two different        
underlying subsystems which are virtual memory      
subsystem and I/O subsystem respectively. These two       
subsystems have their own (different) caching      
mechanisms. Virtual memory subsystem uses     
"page cache", and I/O subsystem uses "buffer       
cache" 
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Figure 3 Double Cache problem and UBC Interface 

 



 

 
to store their data (see figure 3). These two caching          
techniques eventually result into dual caching of data.        
This double-caching of data results in many problems        
viz Memory Inefficiency, Bad Performance, Data      
Inconsistency. These problems are collectively     
known as Double Cache Problem  (BCP). 

3.2    Addressing DCP:  In NetBSD and FreeBSD 

FreeBSD handles this problem by allocating      
same physical memory for both buffer cache and        
page cache. Whereas NetBSD provides Unified      
Buffer Cache (UBC) interface to read file data        
directly into the page cache without going through        
the buffer cache. Table 2 below summarizes the        
different mechanisms to access file data in NetBSD        
and FreeBSD and their subsystems which handle this.        
In FreeBSD, extents read code was implemented       
above buffer cache memory interface and in NetBSD,        
it is implemented above UBC interface. So before        
understanding how FreeBSD’s extent code can be       
imported to NetBSD over UBC interface we must        
understand the UBC interface. 

3.3 UBC interface and VFS in NetBSD 

UBC is a subsystem in NetBSD, which       
solves the problems with the two-cache model. UBC        
model allows to store file data in the page cache for           
both read()/write() and mmap() accesses. File data is        
read directly into the page cache without going        
through the buffer cache by creating two new VOPs         

which return page cache pages with the desired data,         
calling into the device driver to read the data from          
disk if necessary. Since page cache pages aren't        
always mapped, it has a new mechanism for        
providing temporary mappings of page cache pages,       
which is used by read() and write() while copying the          
file data to the application's address space. Figure 5         
shows the complete flow of control of mmap() and         
read/write system calls in NetBSD. The mmap()       
system call is handled by UVM which eventually        
calls VOP_GETPAGES() and VOP_PUTPAGES().    
The only thing remained here, to be implemented by         
a filesystem are these functions. Fortunately, the       
kernel already has the genfs_getpages()/     
genfs_putpages() routines which can be mapped      
directly to VOP_GETPAGES/ VOP_PUTPAGES().    
genfs_getpages() / genfs_putpages are generic     
functions which call VOP_BMAP() for getting file       
logical block to physical block mapping. Hence the        
filesystem specific code resides in only      
VOP_BMAP(). 
 
UBC introduces these new functions: 

● VOP_GETPAGES(), VOP_PUTPAGES() 
These new VOPs are provided by the filesystems to         
allow the VM system to request ranges of pages to be           
read into the memory from the disk or written from          
memory back to the disk. VOP_GETPAGES() must       
allocate pages from the VM system for data which is          
not already cached and then initiate device I/O        
operations to read all the disk blocks which contain         
the data for those pages. 

 

Mechanisms→ IO system calls such as read(),  write() Memory mapping such as mmap() 

FreeBSD Buffer cache Page cache 

NetBSD Page cache using UBC Page cache 

 
Table 2   The approaches of addressing DCP in FreeBSD and NetBSD 

 

 



 

         
Figure 4  Trace of read() and  mmap() in NetBSD 

 
VOP_PUTPAGES() must initiate device I/Os to      
write dirty pages back to the disk. 

● ubc_alloc(), ubc_release(), ubc_pager 

These functions allocate and free temporary      
mappings of page cache file data. These are the page          
cache equivalents of the buffer cache functions       
getblk() and brelse(). ubc_pager is a UVM pager        
which handles page faults on the mappings created by         
ubc_alloc(). A UVM pager is an abstraction which        
embodies knowledge of page-fault resolution and      
other VM data management. The only action       
performed by ubc_pager is to call the new        
VOP_GETPAGES() operation to get pages as needed       
to resolve the faults. 

● VOP_BMAP 
This function is used by genfs_getpages() /       
genfs_putpages to get the file logical data block to         
physical data block mapping. Since logical block       
number to physical block number mapping purely       
depends on the filesystem itself, this function was left         
to be written by the filesystem developer. 
 

3.4  Coding work  

Previous sections describes, how file data      

blocks are read into VM pages and how UBC         

interfaces avail them to the read/write system calls.        

After having this description, it is clear where the         

extent mapping code needs to go in the filesystem.         

The implementation was done as described below : 

1. Ext4 compatible feature flags was first      
updated to include extent support as a new        
feature. While mounting the filesystem, the      
kernel checks the feature flags that a       
filesystem-image (on disk) needs, and     
allows filesystem to mount the     
filesystem-image only if all the essential      
features have been implemented in the      
filesystem. The updation in the feature flags       
was to turn the kernel support on for Ext4         
extents in read-only mount mode. 

2. Writing Ext4 Extent data structures in a       
separate file viz “ext2fs_extents.h”, and the      
implementation of extents functions in a      

 



 

new file ext2fs_extents.c was the next step.       
In ext2fs_extents.c, the main functions were      
ext2fs_ext_find_extent() - function to add     
caching, and few other utility functions.      
These structures and functions were     
imported from FreeBSD [3] as these      
required the OS independent extent logic to       
be transformed into code. 

3. Next step was to implement file logical       
block no. to physical block no. map to        
access the files supporting extents. There      
was a function ‘ext2fs_bmap’ in     
ext2fs_bmap.c which used to invoke     
ext2fs_bmaparray() to get the mapping for      
the file having indirect pointers for file data        
index. There, ext2fs_bmapext() was added     
to get the mapping in case file has extent         
based index for file data blocks. Also a        
sanity check was added before invoking      
these functions based on the value of       
Ext4_EXTENTS bit of ‘di_flag’ field in      
the file inode. 

4   Ext3 HTree DIR Index  
In Ext2fs, directory entries follow linked-list      

data structure in which each directory operation       
(create, open or delete) requires a linear search of an          
entire directory file. This results in a quadratically        
increasing cost of operating on all the files of a          
directory, as the number of files in the directory         
increases. HTree directory indexing extension is      
designed to address this issue. In addition, the HTree         
indexing method is backward and     
forward-compatible with existing Ext2 volumes.     
Let’s begin with understanding the linked-list      
directory structures and then jump to Ext3 HTree        
DIR.  

4.1 Linked List Directory 

In this directory structure, a directory file is        
a linked list of directory entry structures. Each        
structure contains the name of the entry, the inode         
associated with the data of this entry, and the distance          
within the directory file to the next entry. The rec_len          
field in the directory entry stores the 16 bits         
unsigned   displacement  to  the   next   directory 

from the start of the current directory entry. 

Offset(bytes) Size(bytes) Fields 

0 4 inode 

4 2 rec_len 

6 1 name_len 

7 1 file_type 

8 0-255 name 

Table 3  Linked Directory Entry Structure 
 

This field must have a value at least equal to the           
length of the current record. Since rec_len value        
cannot be negative, when a file is removed, the         
previous record within the block has to be modified         
to point to the next valid record within the block or to            
the end of the block when no other directory entry is           
present. If the first entry within the block is removed,          
a blank record will be created and pointed to the next           
directory entry or to the end of the block. The          
directory file is traversed linearly by getting the offset         
of the next entry which is calculated by rec_len +          
offset of the current entry [6]. 

4.2  HTree DIR Index 

HTree (hashed-BTree) is the data structure      
that is used by Ext3/4 as directory layout. It uses          
hashes of the file names as keys of the HTree. There           
are basically two types of blocks in an HTree indexed          
directory: 

1. Directory Index Block (DX-block): Stores     
hash-value and block-ID pairs: 

Hash-value:  hash value of the entry name. 

Block-ID: File logical block number of leaf       
block, or the next level indices block. 

2. Directory Entries Block (DE-block): stores     
directory entries (filenames). 

 
The root of an HTree index is the first block          

of a directory file. The leaves of an HTree are normal           
Ext2 directory blocks, referenced by the root or        
indirectly through intermediate HTree index blocks.      

 



 

References within the directory file are by means of         
logical block offsets within the file. An HTree uses         
hashes of names as keys, rather than the names         
themselves. Each hash key references not an       
individual directory entry, but a range of entries that         
are stored within a single leaf block. An HTree first          
level index block contains an array of index entries,         
each consisting of a hash keys and a logical pointer to           
the indexed block. Each hash key is the lower bound          
of all the hash values in a leaf block and the entries            
are arranged in ascending order of hash key. Both         
hash keys and logical pointers are 32-bit quantities.        
The lowest bit of a hash key is used to flag the            
possibility of a hash collision, leaving 31 bits        
available for the hash itself. The HTree root index         
block contains an array of index entries  in  the 

ext2fs_fake_direct 

e2d_ino /* inode number of entry */ 
e2d_reclen /* length of this record */ 
e2d_namlen /* length of string in d_name */ 
e2d_type; /* file type */ 

 Table 4(a) Fake directory structure 
 

ext2fs_htree_entry 

 h_hash 
 h_blk 

Table 4(b) Index node entry structure 
 

ext2fs_htree_node 

ext2fs_fake_direct h_fake_dirent 
ext2fs_htree_entry h_entries[0] 

Table 4(c) Index node structure 
 

ext2fs_htree_root 

ext2fs_fake_direct h_dot 
h_dot_name[4] 
ext2fs_fake_direct h_dotdot 
h_dotdot_name[4] 
ext2fs_htree_root_info h_info 
ext2fs_htree_entry h_entries[0] 

Table 4(d) htree root structure 

same format as a first level index block. The pointers          
refer to index blocks rather than leaf blocks and the          
hash keys give the lower bounds for the hash keys of           
the referenced index block. The HTree root index        
also contains a short header, providing information       
such as the depth of the HTree and information         
oriented towards checking the HTree index integrity.       
Figure 5 below illustrates an indexed directory stored        
as an htree [10]. 

Lookup() in HTree 

lookup for a name-entry in the HTree is        
begun by reading the root, the first block of the          
directory file. Then a number of tests are performed         
against the header of the index root block in an          
attempt to eliminate any possibility of a corrupted        
index causing a program fault in the operating system         
kernel. Next the hash value of the target name is          
computed, and from that a decision is made for which          
leaf block to search. The desired leaf block is the one           
whose hash range includes the hash of the target         
entry name. Since index entries are of fixed size and          
maintained in sorted order, a binary search is used         
here. The format of an index entry is the same,          
whether it references a leaf block or an interior index          
node, so this step is simply repeated if the index tree           
has more than one level. As the hash probe descends          
through index entries, an access chain is created, until         
the target leaf block is read [7].  

Once a target leaf block has been obtained,        
lookup proceeds exactly as without an index, i.e., by         
linearly searching through the entries in the block. If         
the target name is not found then there is still a           
possibility that the target could be found in the         
following leaf block due to a hash collision. In this          
case, the parent index is examined to see if the hash           
value of the successor leaf block hash has its low bit           
set, indicating that a hash collision does exist. If set,          
then the hash value of the target string is compared          
for equality to the successor block's hash value        
(minus the collision bit). If it is the same then the           
successor leaf block is read, the access chain updated,         
and the search is repeated. 

 

 

 



 

 

          
Figure 5 A typical HTree DIR Index 

 

Implementation in NetBSD 
The core logic of the HTree DIR index had         

already been implemented in other kernels like       
FreeBSD and Linux. Moreover the logic of the HTree         
traversals remains same irrespective of the underlying       
kernel except for the few differences in the code.         
FreeBSD and NetBSD had quite similarity in the        
directory lookup code, hence HTree DIR core       
implementations were directly imported from     
FreeBSD. To dig a bit into the HTree index directory          
code, let’s split the code into following segments.  
 
1.   Add kernel support for HTree  DIR 

Ext4 compatible feature flags were first      
updated to include HTree DIR support as a new         
feature. While mounting the filesystem, the kernel       

checks the feature flags that a filesystem-image(on       
disk) needs, and allows filesystem to mount the        
filesystem-image only if all the essential features are        
implemented in the filesystem. The updation in the        
feature flags was to turn the kernel support on for          
Ext3 HTree DIR in  read-only mount mode. 
 HTree index support at directory level is       
checked by reading Ext2_INDEX bit of ‘e2di_flags’       
field of the directory inode. If this bit is set then the            
first directory block is interpreted as the root of an          
HTree index. 

2.  HTree data structures and hash algorithms 

All the HTree specific data-structures as      
summarized in table 4 were added in ext2fs_htree.h,        
and the hash specific structures were added in        
ext2fs_hash.h, whereas the hash algorithms were      

 



 

implemented in ext2fs_hash.c. FreeBSD    
implementations of hash algorithms were directly      
imported into NetBSD. 

3.  HTree Directory lookup operations 

The code for traversing HTree DIR during       
lookup operation when flag EXT3_INDEX in      
directory inode is set, was written in a new file          
ext2fs_htree.c. Most of the code was placed in the         
function ext2fs_htree_lookup() . The algorithms of     
ext2fs_htree_lookup() was straightforward but since     
there are different approaches of addressing directory       
lookup results in NetBSD and FreeBSD, it required        
few modifications to fit FreeBSD’s code into       
NetBSD kernel. The algorithm steps of lookup       
operation is shown below: 

1. Compute a hash of the name. 
2. Read the index root. 
3. Use binary search to find the first index or         

leaf block that could contain the target hash        
(in tree order). 

4. Repeat the above until the lowest tree level        
is reached 

5. Read the leaf directory entry block and do a         
normal Ext2 directory block search in it. 

6. If the name is found, return its directory        
entry and buffer 

7. Otherwise, if the collision bit of the next        
directory entry is set, continue searching in       
the successor block. 

5  Tool Used 

● VND (VNode Disk Driver) 

The vnd [1] driver in NetBSD,      
provides a disk-like interface to a file. I used         
this tool to give a disk-appearance to the file         
containing filesystem image, so that it can       
readily be mounted in NetBSD and can be        
double checked with other OS.  

● ATF 

ATF (an automated testing    
framework [1]) provides the necessary     
means to easily create test suites composed       
of multiple test programs, which in turn are        

a collection of test cases. It also attempts to         
simplify the debugging of problems when      
these test cases detect an error by providing        
as much information as possible about the       
failure. I used ATF to test the new features         
implemented in this project. 
 

● Apart from these I used, Linux OS as the         
host machine, VirtualBox to run NetBSD as       
the guest machine and Vim-editor an IDE       
for coding purposes. I used Git for version        
controlling and github for my code      
repository. I also used Opengrok tool[16]      
for keyword search in NetBSD source code. 
 
 

6  Testing  
NetBSD has a well organised Automated      

Testing Framework (ATF) using rump which      
separates the test cases from test programs that        
collects and exposes the group of tests cases. NetBSD         
kernel also has a great variety of test cases written for           
users to test their system’s working. I used the same          
test framework to test the Ext2fs module using the         
existing test programs and tests cases. All existing        
tests-cases were passed but test cases specific to        
features implemented as a part of this project are still          
TODO for now. 

7  Future work 
Unit tests for testing the Ext4 specific       

functionality of Ext2fs module are remaining to be        

written. Secondly, there are few feature remaining to        

be implemented to achieve full Ext4 read support.        

Those are mainly FLEX_BG, DIR_NLINK,     

GDT_CKSUM. But these need significant time      

investment, probably as a separate GSoC project. 

Coming to write support, which is even       

more challenging, needs additional extents write      

support and HTree directory index write support to        

be implemented. 
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9  Availability 
The code for this project was hosted on        

Github and it is under active development. It can be          
obtained from https://github.com/hrishikeshgoyal/   
ext2fs. The code has also been included into NetBSD         
source and resides here    
http://cvsweb.netbsd.org/bsdweb.cgi/src/sys/ufs/ext2f
s/?only_with_tag=MAIN 
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