

Addition of Ext4 Extent and Ext3 HTree DIR Read-Only
Support in NetBSD

 Hrishikesh Christos Zoulas

 < hrishi.goyal@gmail.com > <christos@NetBSD.org>

Abstract
This paper discusses the project

‘Implementation of Ext4 and Ext3 Read Support for
NetBSD kernel’ done as a part of Google Summer of
Code 2016. The objective of this project was to add
the support of Ext3 and Ext4 filesystem features viz.,
Ext4 Extents and Ext3 HTree DIR in read only mode
by extending the code of existing Ext2fs
implementation in NetBSD kernel,.

1 Introduction
The fourth extended file systems or Ext4 as it is
commonly known, is the default filesystem of many
Linux distributions. Ext4 is the enhancement of Ext3
and Ext2 filesystems which brought improved
efficiency and more reliability. In many ways, Ext4 is
a deeper improvement over Ext3, as it introduces a
number of new features like Extent support, delayed
allocation and many more.

Traditionally, in NetBSD, Ext2 is the base
filesystem and some features from Ext3 and Ext4 are
supported. However, there has been lack of support
of main features of Ext3 and Ext4 filesystems in
NetBSD. In machines running NetBSD, dual booted
with other OS supporting Ext4 filesystem, getting
access to Ext4 files through NetBSD, is a primary
need. Read-only support of Ext4 filesystem in
NetBSD is also important for further evolution of
Ext4 into full read-write support.

Earlier Ext2 and Ext3 had the limitation on
the size of the file. They used 32 bit block number to
access the data blocks. So, that limited the maximum
size of file to be 2^32 * block size(eg. 4kb) = 16TB.
Despite this Ext4 filesystem supports very large files
as it has 48 bits to address a block. The access time
for such large files on following traditional indirect
block pointer approach is significantly high, because

accessing a data block involves lots of indirection.
Ext4 Extent provides a more efficient way of
indexing file data blocks which especially reduces
access time of large files by allocating contiguous
disk blocks for the file data.

The directory operations (create, open or
delete) in Ext2fs requires a linear search of an entire
directory file. This results in a quadratically
increasing cost of operating on all the files of a
directory, as the number of files in the directory
increases. The HTree directory indexing extension
added in Ext3fs, addresses this issue and reduces
the respective operating cost to nlog(n).

This project added these two features in the
NetBSD kernel. The project was started with the
implementation of Ext4 Extent in read-only mode
and then the next feature Ext3 Htree DIR read
support was implemented.

2 Ext4 Extents

As mentioned earlier Extent block mapping
is an efficient approach of mapping logical to
physical blocks for large contiguous files. But before
understanding the Extents, let’s try to understand the
traditional indirect block mapping approach used in
Ext2/3 filesystems, for indexing the file data blocks.

2.1 Indirect Block Mapping

The information for the data blocks of a file
is stored in the i_data field of the inode structure. The
first 12 entries of i_data contain the block numbers of
the first 12 data blocks of the file. Then it contains
the block number for the Indirect blocks. That block
contains the array of block numbers which point to
the data. Similarly, there is double indirect block and
triple indirect block (figure 1).

So if we need to get the data from a very
large file, we need to go through those indirections.

mailto:hrishi.goyal@gmail.com

Figure 1 Indirect block mapping

2.2 Extent

In extent based block mapping, the i_data of
inode contains Extent structures [4]. There is a extent
header, Extent and Extent index.

The Extent is implemented as a B+ Tree,
with a disk block allocated for each node in the tree
except for the root node. All nodes contain a header
and either extent structures or extent index
structures(Table 1). Specifically the leaf nodes have
the Extent structure and others nodes have Extent
Index Structure. The header contains the number of
valid entries in the node, the capacity of entries the
node can store, the depth of the tree, and a magic
number. The magic number can be used to
differentiate between different versions of extents, as
new enhancements are made to the feature, such as
increasing to 64-bit block numbers.

The Extent struct is a single descriptor
which represents a range of contiguous physical
blocks (Figure 2). The physical block field in an
extents structure takes 48 bits. A single extent can
represent 215 contiguous blocks, or 128 MB, with 4
KB block size. The MSB of the extent length is used
to flag uninitialized extents, used for the preallocation
feature. The extent index structures are used for non
leaf nodes. It contains the block number of the block
where next level of nodes are stored. The logic can be
described by the following figure 2. Four extents can
be stored in the ext4 inode structure directly. This
is generally sufficient to represent small or
contiguous files. For very large, highly
fragmented, or sparse files, new blocks with extent
index structures are used. In this case a constant
depth extent tree is used to store the extents map of
a file.

ext4_extent_idx

 ei_blk /* indexes logical blocks */
 ei_leaf_lo /* points to physical block of the

 * next level */
 ei_leaf_hi /* high 16 bits of physical block */
 ei_unused

Table 1 (a) Extent Index Structure

ext4_extent_header

eh_magic /* magic number: 0xf30a */
eh_ecount /* number of valid entries */
eh_max /* capacity of store in entries */
eh_depth /* the depth of extent tree */
eh_gen /* generation of extent tree */

Table 1(b) Extent Header Structure

ext4_extent

e_blk /*first logical block */
e_len /* number of blocks */
e_start_hi /* high 16 bits of physical block*/
e_start_lo /* low 32 bits of physical block */

Table 1 (c) Extent tree extent structures

Figure 2 shows the layout of the extents
tree. The root of this tree is stored in the ext4 inode
structure and extents are stored in the leaf nodes of
the tree.

2.3 Extent Tree Traversals

In the read operation for the requested data
of a file having Extent tree as an index for file data
blocks, getting the map of logical block number to
physical block number is a crucial step. To map file’s
logical block number to corresponding disk block
number, one needs to travel Extent tree beginning
from the root stored in the i_data field of the inode.
The header field ‘eh_ecount’ in each node gives the
number of children of current node as each extent
index contains a pointer to a child node. The nodes in
next level of the Extent tree may further be non leaf
nodes. All the nodes in the deepest (leaf) level of the
tree contain extent structs which represent a chunk of
contiguous file data blocks. All the indices in a node
are sorted according to ‘ei_blk’ value in the index,
hence binary search is used in block search
algorithms [11].

Figure 2 A typical extent tree

To find a physical block number
corresponding to a file logical block, Extent tree is
traversed from top to bottom in the direction of the
extent index with ‘ei_blk’ value just less than or
equal to the target hash value at each level. At the
leaf level, nearest extent is found in the same manner
which contains the pointer to the contiguous physical
blocks. During tree traversal, path is stored into an
array which represents the exact path of a disk block
corresponding to file logical block.

3 UBC Interface in NetBSD
Previous section gives an overview of extent

structs and process of getting physical block
corresponding to target file block. The core logic of
the extent remains same irrespective of the
underlying filesystem and OS. There already exists
a number of extent map implementations for the file
data block indexing. For example, in FreeBSD,
Extent read support had already been implemented.
Needless to say, the reimplementation of Extent
core-logic was not a challenge here, the challenge
was to deal with different standards of both kernel

and to figure out how FreeBSD’s extent
implementation fit the NetBSD kernel without the
need of much modifications. So let’s understand the
difference in VFS interfaces in the two kernels,
FreeBSD and NetBSD. The major differences in the
VFS layer of both the kernels are due to having
different strategies to approach the Double Cache
Problem [12]. This section, describes the Double
Cache Problem and UBC interface which addresses
this problem in NetBSD. We will also look at
FreeBSD’s strategy to address this problem.

3.1 Double Cache Problem

There are two mechanisms to access
filesystem data. One is memory mapping and the
other is I/O system calls such as read() and write().
These two mechanisms are handled by two different
underlying subsystems which are virtual memory
subsystem and I/O subsystem respectively. These two
subsystems have their own (different) caching
mechanisms. Virtual memory subsystem uses
"page cache", and I/O subsystem uses "buffer
cache"

 (a) (b)
Figure 3 Double Cache problem and UBC Interface

to store their data (see figure 3). These two caching
techniques eventually result into dual caching of data.
This double-caching of data results in many problems
viz Memory Inefficiency, Bad Performance, Data
Inconsistency. These problems are collectively
known as Double Cache Problem (BCP).

3.2 Addressing DCP: In NetBSD and FreeBSD

FreeBSD handles this problem by allocating
same physical memory for both buffer cache and
page cache. Whereas NetBSD provides Unified
Buffer Cache (UBC) interface to read file data
directly into the page cache without going through
the buffer cache. Table 2 below summarizes the
different mechanisms to access file data in NetBSD
and FreeBSD and their subsystems which handle this.
In FreeBSD, extents read code was implemented
above buffer cache memory interface and in NetBSD,
it is implemented above UBC interface. So before
understanding how FreeBSD’s extent code can be
imported to NetBSD over UBC interface we must
understand the UBC interface.

3.3 UBC interface and VFS in NetBSD

UBC is a subsystem in NetBSD, which
solves the problems with the two-cache model. UBC
model allows to store file data in the page cache for
both read()/write() and mmap() accesses. File data is
read directly into the page cache without going
through the buffer cache by creating two new VOPs

which return page cache pages with the desired data,
calling into the device driver to read the data from
disk if necessary. Since page cache pages aren't
always mapped, it has a new mechanism for
providing temporary mappings of page cache pages,
which is used by read() and write() while copying the
file data to the application's address space. Figure 5
shows the complete flow of control of mmap() and
read/write system calls in NetBSD. The mmap()
system call is handled by UVM which eventually
calls VOP_GETPAGES() and VOP_PUTPAGES().
The only thing remained here, to be implemented by
a filesystem are these functions. Fortunately, the
kernel already has the genfs_getpages()/
genfs_putpages() routines which can be mapped
directly to VOP_GETPAGES/ VOP_PUTPAGES().
genfs_getpages() / genfs_putpages are generic
functions which call VOP_BMAP() for getting file
logical block to physical block mapping. Hence the
filesystem specific code resides in only
VOP_BMAP().

UBC introduces these new functions:

● VOP_GETPAGES(), VOP_PUTPAGES()
These new VOPs are provided by the filesystems to
allow the VM system to request ranges of pages to be
read into the memory from the disk or written from
memory back to the disk. VOP_GETPAGES() must
allocate pages from the VM system for data which is
not already cached and then initiate device I/O
operations to read all the disk blocks which contain
the data for those pages.

Mechanisms→ IO system calls such as read(), write() Memory mapping such as mmap()

FreeBSD Buffer cache Page cache

NetBSD Page cache using UBC Page cache

Table 2 The approaches of addressing DCP in FreeBSD and NetBSD

Figure 4 Trace of read() and mmap() in NetBSD

VOP_PUTPAGES() must initiate device I/Os to
write dirty pages back to the disk.

● ubc_alloc(), ubc_release(), ubc_pager

These functions allocate and free temporary
mappings of page cache file data. These are the page
cache equivalents of the buffer cache functions
getblk() and brelse(). ubc_pager is a UVM pager
which handles page faults on the mappings created by
ubc_alloc(). A UVM pager is an abstraction which
embodies knowledge of page-fault resolution and
other VM data management. The only action
performed by ubc_pager is to call the new
VOP_GETPAGES() operation to get pages as needed
to resolve the faults.

● VOP_BMAP
This function is used by genfs_getpages() /
genfs_putpages to get the file logical data block to
physical data block mapping. Since logical block
number to physical block number mapping purely
depends on the filesystem itself, this function was left
to be written by the filesystem developer.

3.4 Coding work

Previous sections describes, how file data

blocks are read into VM pages and how UBC

interfaces avail them to the read/write system calls.

After having this description, it is clear where the

extent mapping code needs to go in the filesystem.

The implementation was done as described below :

1. Ext4 compatible feature flags was first
updated to include extent support as a new
feature. While mounting the filesystem, the
kernel checks the feature flags that a
filesystem-image (on disk) needs, and
allows filesystem to mount the
filesystem-image only if all the essential
features have been implemented in the
filesystem. The updation in the feature flags
was to turn the kernel support on for Ext4
extents in read-only mount mode.

2. Writing Ext4 Extent data structures in a
separate file viz “ext2fs_extents.h”, and the
implementation of extents functions in a

new file ext2fs_extents.c was the next step.
In ext2fs_extents.c, the main functions were
ext2fs_ext_find_extent() - function to add
caching, and few other utility functions.
These structures and functions were
imported from FreeBSD [3] as these
required the OS independent extent logic to
be transformed into code.

3. Next step was to implement file logical
block no. to physical block no. map to
access the files supporting extents. There
was a function ‘ext2fs_bmap’ in
ext2fs_bmap.c which used to invoke
ext2fs_bmaparray() to get the mapping for
the file having indirect pointers for file data
index. There, ext2fs_bmapext() was added
to get the mapping in case file has extent
based index for file data blocks. Also a
sanity check was added before invoking
these functions based on the value of
Ext4_EXTENTS bit of ‘di_flag’ field in
the file inode.

4 Ext3 HTree DIR Index
In Ext2fs, directory entries follow linked-list

data structure in which each directory operation
(create, open or delete) requires a linear search of an
entire directory file. This results in a quadratically
increasing cost of operating on all the files of a
directory, as the number of files in the directory
increases. HTree directory indexing extension is
designed to address this issue. In addition, the HTree
indexing method is backward and
forward-compatible with existing Ext2 volumes.
Let’s begin with understanding the linked-list
directory structures and then jump to Ext3 HTree
DIR.

4.1 Linked List Directory

In this directory structure, a directory file is
a linked list of directory entry structures. Each
structure contains the name of the entry, the inode
associated with the data of this entry, and the distance
within the directory file to the next entry. The rec_len
field in the directory entry stores the 16 bits
unsigned displacement to the next directory

from the start of the current directory entry.

Offset(bytes) Size(bytes) Fields

0 4 inode

4 2 rec_len

6 1 name_len

7 1 file_type

8 0-255 name

Table 3 Linked Directory Entry Structure

This field must have a value at least equal to the
length of the current record. Since rec_len value
cannot be negative, when a file is removed, the
previous record within the block has to be modified
to point to the next valid record within the block or to
the end of the block when no other directory entry is
present. If the first entry within the block is removed,
a blank record will be created and pointed to the next
directory entry or to the end of the block. The
directory file is traversed linearly by getting the offset
of the next entry which is calculated by rec_len +
offset of the current entry [6].

4.2 HTree DIR Index

HTree (hashed-BTree) is the data structure
that is used by Ext3/4 as directory layout. It uses
hashes of the file names as keys of the HTree. There
are basically two types of blocks in an HTree indexed
directory:

1. Directory Index Block (DX-block): Stores
hash-value and block-ID pairs:

Hash-value: hash value of the entry name.

Block-ID: File logical block number of leaf
block, or the next level indices block.

2. Directory Entries Block (DE-block): stores
directory entries (filenames).

The root of an HTree index is the first block

of a directory file. The leaves of an HTree are normal
Ext2 directory blocks, referenced by the root or
indirectly through intermediate HTree index blocks.

References within the directory file are by means of
logical block offsets within the file. An HTree uses
hashes of names as keys, rather than the names
themselves. Each hash key references not an
individual directory entry, but a range of entries that
are stored within a single leaf block. An HTree first
level index block contains an array of index entries,
each consisting of a hash keys and a logical pointer to
the indexed block. Each hash key is the lower bound
of all the hash values in a leaf block and the entries
are arranged in ascending order of hash key. Both
hash keys and logical pointers are 32-bit quantities.
The lowest bit of a hash key is used to flag the
possibility of a hash collision, leaving 31 bits
available for the hash itself. The HTree root index
block contains an array of index entries in the

ext2fs_fake_direct

e2d_ino /* inode number of entry */
e2d_reclen /* length of this record */
e2d_namlen /* length of string in d_name */
e2d_type; /* file type */

 Table 4(a) Fake directory structure

ext2fs_htree_entry

 h_hash
 h_blk

Table 4(b) Index node entry structure

ext2fs_htree_node

ext2fs_fake_direct h_fake_dirent
ext2fs_htree_entry h_entries[0]

Table 4(c) Index node structure

ext2fs_htree_root

ext2fs_fake_direct h_dot
h_dot_name[4]
ext2fs_fake_direct h_dotdot
h_dotdot_name[4]
ext2fs_htree_root_info h_info
ext2fs_htree_entry h_entries[0]

Table 4(d) htree root structure

same format as a first level index block. The pointers
refer to index blocks rather than leaf blocks and the
hash keys give the lower bounds for the hash keys of
the referenced index block. The HTree root index
also contains a short header, providing information
such as the depth of the HTree and information
oriented towards checking the HTree index integrity.
Figure 5 below illustrates an indexed directory stored
as an htree [10].

Lookup() in HTree

lookup for a name-entry in the HTree is
begun by reading the root, the first block of the
directory file. Then a number of tests are performed
against the header of the index root block in an
attempt to eliminate any possibility of a corrupted
index causing a program fault in the operating system
kernel. Next the hash value of the target name is
computed, and from that a decision is made for which
leaf block to search. The desired leaf block is the one
whose hash range includes the hash of the target
entry name. Since index entries are of fixed size and
maintained in sorted order, a binary search is used
here. The format of an index entry is the same,
whether it references a leaf block or an interior index
node, so this step is simply repeated if the index tree
has more than one level. As the hash probe descends
through index entries, an access chain is created, until
the target leaf block is read [7].

Once a target leaf block has been obtained,
lookup proceeds exactly as without an index, i.e., by
linearly searching through the entries in the block. If
the target name is not found then there is still a
possibility that the target could be found in the
following leaf block due to a hash collision. In this
case, the parent index is examined to see if the hash
value of the successor leaf block hash has its low bit
set, indicating that a hash collision does exist. If set,
then the hash value of the target string is compared
for equality to the successor block's hash value
(minus the collision bit). If it is the same then the
successor leaf block is read, the access chain updated,
and the search is repeated.

Figure 5 A typical HTree DIR Index

Implementation in NetBSD
The core logic of the HTree DIR index had

already been implemented in other kernels like
FreeBSD and Linux. Moreover the logic of the HTree
traversals remains same irrespective of the underlying
kernel except for the few differences in the code.
FreeBSD and NetBSD had quite similarity in the
directory lookup code, hence HTree DIR core
implementations were directly imported from
FreeBSD. To dig a bit into the HTree index directory
code, let’s split the code into following segments.

1. Add kernel support for HTree DIR

Ext4 compatible feature flags were first
updated to include HTree DIR support as a new
feature. While mounting the filesystem, the kernel

checks the feature flags that a filesystem-image(on
disk) needs, and allows filesystem to mount the
filesystem-image only if all the essential features are
implemented in the filesystem. The updation in the
feature flags was to turn the kernel support on for
Ext3 HTree DIR in read-only mount mode.
 HTree index support at directory level is
checked by reading Ext2_INDEX bit of ‘e2di_flags’
field of the directory inode. If this bit is set then the
first directory block is interpreted as the root of an
HTree index.

2. HTree data structures and hash algorithms

All the HTree specific data-structures as
summarized in table 4 were added in ext2fs_htree.h,
and the hash specific structures were added in
ext2fs_hash.h, whereas the hash algorithms were

implemented in ext2fs_hash.c. FreeBSD
implementations of hash algorithms were directly
imported into NetBSD.

3. HTree Directory lookup operations

The code for traversing HTree DIR during
lookup operation when flag EXT3_INDEX in
directory inode is set, was written in a new file
ext2fs_htree.c. Most of the code was placed in the
function ext2fs_htree_lookup() . The algorithms of
ext2fs_htree_lookup() was straightforward but since
there are different approaches of addressing directory
lookup results in NetBSD and FreeBSD, it required
few modifications to fit FreeBSD’s code into
NetBSD kernel. The algorithm steps of lookup
operation is shown below:

1. Compute a hash of the name.
2. Read the index root.
3. Use binary search to find the first index or

leaf block that could contain the target hash
(in tree order).

4. Repeat the above until the lowest tree level
is reached

5. Read the leaf directory entry block and do a
normal Ext2 directory block search in it.

6. If the name is found, return its directory
entry and buffer

7. Otherwise, if the collision bit of the next
directory entry is set, continue searching in
the successor block.

5 Tool Used

● VND (VNode Disk Driver)

The vnd [1] driver in NetBSD,
provides a disk-like interface to a file. I used
this tool to give a disk-appearance to the file
containing filesystem image, so that it can
readily be mounted in NetBSD and can be
double checked with other OS.

● ATF

ATF (an automated testing
framework [1]) provides the necessary
means to easily create test suites composed
of multiple test programs, which in turn are

a collection of test cases. It also attempts to
simplify the debugging of problems when
these test cases detect an error by providing
as much information as possible about the
failure. I used ATF to test the new features
implemented in this project.

● Apart from these I used, Linux OS as the
host machine, VirtualBox to run NetBSD as
the guest machine and Vim-editor an IDE
for coding purposes. I used Git for version
controlling and github for my code
repository. I also used Opengrok tool[16]
for keyword search in NetBSD source code.

6 Testing
NetBSD has a well organised Automated

Testing Framework (ATF) using rump which
separates the test cases from test programs that
collects and exposes the group of tests cases. NetBSD
kernel also has a great variety of test cases written for
users to test their system’s working. I used the same
test framework to test the Ext2fs module using the
existing test programs and tests cases. All existing
tests-cases were passed but test cases specific to
features implemented as a part of this project are still
TODO for now.

7 Future work
Unit tests for testing the Ext4 specific

functionality of Ext2fs module are remaining to be

written. Secondly, there are few feature remaining to

be implemented to achieve full Ext4 read support.

Those are mainly FLEX_BG, DIR_NLINK,

GDT_CKSUM. But these need significant time

investment, probably as a separate GSoC project.

Coming to write support, which is even

more challenging, needs additional extents write

support and HTree directory index write support to

be implemented.

8 Acknowledgement
This project has been developed as part of

Google Summer of Code 2016, so thanks to Google
for sponsoring it. Special thanks to my mentor
Christos Zoulas for his valuable remarks. I would like
to thank all the NetBSD community members who
answered my queries on IRC and provided me useful
suggestions.

9 Availability
The code for this project was hosted on

Github and it is under active development. It can be
obtained from https://github.com/hrishikeshgoyal/
ext2fs. The code has also been included into NetBSD
source and resides here
http://cvsweb.netbsd.org/bsdweb.cgi/src/sys/ufs/ext2f
s/?only_with_tag=MAIN

References
[1] NetBSD manual page of vnd

http://netbsd.gw.com/cgi-bin/man-cgi?vnd+
4+NetBSD-current

[2] NetBSD Guide especially for cross-
compiling NetBSD with build.sh
https://www.netbsd.org/docs/guide/en/index.
html

[3] FreeBSD codebase
https://github.com/freebsd/freebsd/tree/mast
er/sys/fs/ext2fs

[4] Ext4 wikis
https://kernelnewbies.org/Ext4
https://ext4.wiki.kernel.org/index.php/Main_
Page

[5] Google Summer of Code home page
https://summerofcode.withgoogle.com/archi
ve/

[6] sourceforge for Directory indexing

http://ext2.sourceforge.net/2005-ols/paper-ht
ml/node3.html

[7] Daniel Phillips for Directory Index for Ext2
http://linuxshowcase.org/2001/full_papers/p
hillips/phillips_html/index.html

[8] Richard Henwood for HTree index and
HTree path
https://wiki.hpdd.intel.com/

[9] Mingming Cao, Theodore Y. Ts’o, Badari
Pulavarty, Suparna Bhattacharya
IBM Linux Technology Center

[10] Borislav Djordjevic, Valentina Timcenko
Ext4 file system in Linux Environment:
Features and Performance Analysis

[11] Avantika Mathur, Mingming Cao, Suparna
Bhattacharya
IBM Linux Technology Center

[12] Freenix 2000 USENIX Annual Technical
Conference Paper
https://www.usenix.org/legacy/event/usenix
2000/freenix/full_papers/

