Portable Hotplugging

A Peek into NetBSD's uvm_hotplug(9) API Development

Santhosh N. Raju santhosh.raju@gmail.com

September 23, 2017

Cherry G. Mathew cherry@NetBSD.org

Setting Expectations

What will NOT be covered...

- Usage of uvm_hotplug(9)
- Application of uvm_hotplug(9)
- Refer man page of uvm_hotplug(9) for that

What will NOT be covered...

- Usage of uvm_hotplug(9)
- Application of uvm_hotplug(9)
- Refer man page of uvm_hotplug(9) for that

So what I am going to talk about ...

- Using TDD and how it was applied to uvm_hotplug(9) API
- Design changes in uvm_hotplug(9) and how they were implemented
- Some interesting edge cases in uvm_hotplug(9) development
- How we used atf(7) to do performance testing

Background

- Uses a static array (vm_physmem[]) to hold segments
- Maximum size of this array is defined in the macro VM_PHYSSEG_MAX

- Uses a static array (vm_physmem[]) to hold segments
- Maximum size of this array is defined in the macro VM_PHYSSEG_MAX
- Implementation can be seen in uvm_page.c

struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; int vm_nphysseg = 0; #define vm_nphysmem vm_nphysseg

We trace our steps into showing you how we converted this **array** implementation to a rbtree(3) based implementation.

Sanitising for uvm_hotplug(9)

• Creating a reference API

- Creating a reference API
- Separating out the existing API

- Creating a reference API
- Separating out the existing API
- Exposing the now separated API

- Creating a reference API
- Separating out the existing API
- Exposing the now separated API
- Testing the API in userspace

- There were no **Tests** to use as a reference
- We created an **Idealised** API to represent how the hotplug API should look.
- Idealised API now acted as the baseline for the ATF tests that should have been present in uvm (9)
- Chuck Silvers gave valuable feedback when we were making this **Idealised** API

- There were no **Tests** to use as a reference
- We created an **Idealised** API to represent how the hotplug API should look.
- Idealised API now acted as the baseline for the ATF tests that should have been present in uvm (9)
- Chuck Silvers gave valuable feedback when we were making this **Idealised** API
 - NOTE: The "Idealised" API was not a part of the NetBSD build system. However the tests were buildable with atf(7)

- Going through code mostly in uvm_page.c and some MD parts.
- Separated stuff into uvm_physseg.c and uvm_physseg.h
- Retrofitted relevant parts into various sections of Idealised API

- Kept structures that need not be exposed globally to the users in a uvm_physseg.c file
- The uvm_physseg.h file nicely exposes all the "valid" operations that can be done on the various opaque structures that is used in this API
- Exposed these utility functions via header file

- Kept structures that need not be exposed globally to the users in a uvm_physseg.c file
- The uvm_physseg.h file nicely exposes all the "valid" operations that can be done on the various opaque structures that is used in this API
- Exposed these utility functions via header file
- This refactoring effort resulted in actual buildable and bootable code

• Included the uvm_physseg.c file as part of the ATF test

- Included the uvm_physseg.c file as part of the ATF test
- Stubbed / Re-implemented kernel API calls
- Stubbed / Re-implemented dependent API calls

- Included the uvm_physseg.c file as part of the ATF test
- Stubbed / Re-implemented kernel API calls
- Stubbed / Re-implemented dependent API calls
- This is similar to Mocking APIs

- Included the uvm_physseg.c file as part of the ATF test
- Stubbed / Re-implemented kernel API calls
- Stubbed / Re-implemented dependent API calls
- This is similar to Mocking APIs

An example of kmem_alloc() being stubbed

```
void *
kmem_alloc(size_t size, km_flag_t flags)
{
     return malloc(size);
}
```

Design and Implementation

• Implemented using the rbtree(3) part of NetBSD C Library.

- Implemented using the rbtree(3) part of NetBSD C Library.
- No worries about maintaining a sorted order. Made easier by RB_TREE_FOREACH()

- Implemented using the rbtree(3) part of NetBSD C Library.
- No worries about maintaining a sorted order. Made easier by RB_TREE_FOREACH()
- No more multiple strategies for maintaining the segments

- Implemented using the rbtree(3) part of NetBSD C Library.
- No worries about maintaining a sorted order. Made easier by RB_TREE_FOREACH()
- No more multiple strategies for maintaining the segments
- Less code clutter

- Implemented using the rbtree(3) part of NetBSD C Library.
- No worries about maintaining a sorted order. Made easier by RB_TREE_FOREACH()
- No more multiple strategies for maintaining the segments
- Less code clutter
- Neater and cleaner API, compared to queue (3) and tree (3)

• Handle for accessing segment changed between static array and R-B Tree.

- Handle for accessing segment changed between static array and R-B Tree.
- Index of array vm_physmem[] vs Pointer to struct vm_physseg

- Handle for accessing segment changed between static array and R-B Tree.
- Index of array vm_physmem[] vs Pointer to struct vm_physseg
- Modifying a fundamental part of the operating system implies every single architecture port of NetBSD is affected. (78 at the time of writing this)

- Handle for accessing segment changed between static array and R-B Tree.
- Index of array vm_physmem[] vs Pointer to struct vm_physseg
- Modifying a fundamental part of the operating system implies every single architecture port of NetBSD is affected. (78 at the time of writing this)
- What are the performance implications?

• A new abstraction for the memory segment handles uvm_physseg_t was introduced

Implementing the R-B tree

- A new abstraction for the memory segment handles uvm_physseg_t was introduced
- Utility functions, to ease the transition
 - Before

```
for(lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
    seg = VM_PHYSMEM_PTR(lcv);
    freepages += (seg->end - seg->start);
}
```

Implementing the R-B tree

Net BSD

- A new abstraction for the memory segment handles uvm_physseg_t was introduced
- Utility functions, to ease the transition
 - Before

```
for(lcv = 0; lcv < vm_nphysmem ; lcv++) {
   seg = VM_PHYSMEM_PTR(lcv);
   freepages += (seg->end - seg->start);
}
```

• After

Implementing the R-B tree

NetBSD

- A new abstraction for the memory segment handles uvm_physseg_t was introduced
- Utility functions, to ease the transition
 - Before

```
for(lcv = 0; lcv < vm_nphysmem ; lcv++) {
    seg = VM_PHYSMEM_PTR(lcv);
    freepages += (seg->end - seg->start);
}
```

• After

• An interesting utility function to note is

```
uvm_physseg_valid()
```

Testing uvm_physseg via ATF

• Baseline set of ATF tests written for the original static array implementation

- Baseline set of ATF tests written for the original static array implementation
- rbtree(3) implementation would work as long as the baseline ATF Tests passed.

- Baseline set of ATF tests written for the original static array implementation
- rbtree(3) implementation would work as long as the baseline ATF Tests passed.
- Overall this did reduce considerably the amount of time we needed to spend to make sure the old and the new implementation were working as expected

- Baseline set of ATF tests written for the original static array implementation
- rbtree(3) implementation would work as long as the baseline ATF Tests passed.
- Overall this did reduce considerably the amount of time we needed to spend to make sure the old and the new implementation were working as expected
- However, there were some interesting "Edge Cases"

- Function was originally designed to plug in segments of memory range during boot time.
- If any errors happened it would generally print a message and / or panic
- It was fine for uvm_page_physload() to return void after its execution in this scenario

- Function was originally designed to plug in segments of memory range during boot time.
- If any errors happened it would generally print a message and / or panic
- It was fine for uvm_page_physload() to return void after its execution in this scenario
- But this was NOT FINE for the ATF Testing

We added a return value of type uvm_physmem_t

We added a return value of type uvm_physmem_t

Old Prototype

void

uvm_page_physload(paddr_t, paddr_t, paddr_t, int);

We added a return value of type uvm_physmem_t

Old Prototype

void

uvm_page_physload(paddr_t, paddr_t, paddr_t, int);

New Prototype

```
uvm_physmem_t
uvm_page_physload(paddr_t, paddr_t, paddr_t, int);
```


We added a return value of type uvm_physmem_t

Old Prototype

void

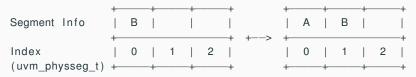
uvm_page_physload(paddr_t, paddr_t, paddr_t, int);

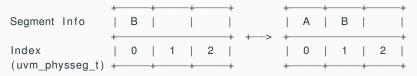
New Prototype

```
uvm_physmem_t
uvm_page_physload(paddr_t, paddr_t, paddr_t, int);
```

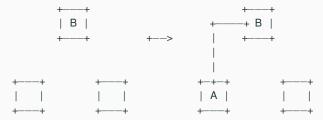
The tests became more concise, more readable and had unwanted assumptions removed from within.

- A particular test case uvm_physseg_get_prev kept failing for static array implementation but **not** R-B Tree implementation
- For the static array implementation we were using the VM_PSTRAT_BSEARCH strategy


- A particular test case uvm_physseg_get_prev kept failing for static array implementation but **not** R-B Tree implementation
- For the static array implementation we were using the VM_PSTRAT_BSEARCH strategy
- The test failed only if segments being inserted into the system out-of-order, this meant that the page frames of the segments that were inserted in chunks were not in a sorted order


- A particular test case uvm_physseg_get_prev kept failing for static array implementation but **not** R-B Tree implementation
- For the static array implementation we were using the VM_PSTRAT_BSEARCH strategy
- The test failed only if segments being inserted into the system out-of-order, this meant that the page frames of the segments that were inserted in chunks were not in a sorted order
- Consequence of changing the way the **handle of segment** was being referenced

NetBSD


Static array implementation

Static array implementation

R-B Tree implementation

Note: The pointer to the nodes are the handles (uvm_physseg_t)

 In order to separately identify this property of mutability we added a new test case in ATF
 uvm_physseg_handle_immutable

- In order to separately identify this property of mutability we added a new test case in ATF
 uvm_physseg_handle_immutable
- This test is expected to fail for static array implementation

- In order to separately identify this property of mutability we added a new test case in ATF uvm_physseg_handle_immutable
- This test is expected to fail for static array implementation
- This test is expected to pass for R-B tree implementation

- In order to separately identify this property of mutability we added a new test case in ATF
 uvm_physseg_handle_immutable
- This test is expected to fail for static array implementation
- This test is expected to pass for R-B tree implementation
- This is important to notify the users of the old API and new API about the potential pitfall of assuming the integrity of the handle when writing new code.

Booting the Kernel

• We quickly identified that kmem(9) is not available until uvm_page_init() has done with all the initialization

- We quickly identified that kmem(9) is not available until uvm_page_init() has done with all the initialization
- Maintain a minimal "static array" whose size is
 VM_PHYSSEG_MAX and once the init process is over,
 switch over to the kmem (9) allocator
- uvm.page_init_done was used to distinguish when to switch over to kmem(9)

- We quickly identified that kmem(9) is not available until uvm_page_init() has done with all the initialization
- Maintain a minimal "static array" whose size is
 VM_PHYSSEG_MAX and once the init process is over,
 switch over to the kmem (9) allocator
- uvm.page_init_done was used to distinguish when to switch over to kmem(9)
- We wrote wrappers for the kmem(9) allocators.
- uvm_physseg_alloc() and uvm_physseg_free()

- We quickly identified that kmem(9) is not available until uvm_page_init() has done with all the initialization
- Maintain a minimal "static array" whose size is
 VM_PHYSSEG_MAX and once the init process is over,
 switch over to the kmem (9) allocator
- uvm.page_init_done was used to distinguish when to switch over to kmem(9)
- We wrote wrappers for the kmem(9) allocators.
- uvm_physseg_alloc() and uvm_physseg_free()
- Wrote up the test cases for these first, allowing for a smooth implementation

Case 2: Fragmentation of segments

What exactly is "fragmentation of a segment"?

What exactly is "fragmentation of a segment"?

The pgs[] is contained in a given segment, allocated by kmem(9) allocators

What exactly is "fragmentation of a segment"?

The pgs[] is contained in a given segment, allocated by kmem(9) allocators

So what happens to pgs [] if we "unplug" a section?

What exactly is "fragmentation of a segment"?

The pgs[] is contained in a given segment, allocated by kmem(9) allocators

+ _____+ | Segment A | + _____+

So what happens to pgs [] if we "unplug" a section?

What happens to pgs[] if we "unplug" from the middle?

How did we solve this?

How did we solve this?

• Use the extent (9) memory manager to manage the pgs[] array

How did we solve this?

- Use the extent (9) memory manager to manage the pgs[] array
- We applied the "init dance" technique to solve Boot time vs non-Boot time allocation of slabs

How did we solve this?

- Use the extent (9) memory manager to manage the pgs[] array
- We applied the "init dance" technique to solve Boot time vs non-Boot time allocation of slabs
- Once again extensive ATF tests that helped us out in minimising the downtime from debugging the code

Performance evaluation

• The most frequent opeation is uvm_physseg_find()

- The most frequent opeation is uvm_physseg_find()
- Copied over the PHYS_TO_VM_PAGE() macro and the related code from uvm_page.c

- The most frequent opeation is uvm_physseg_find()
- Copied over the PHYS_TO_VM_PAGE() macro and the related code from uvm_page.c
- Plug in segments and then do multiple calls to

```
PHYS_TO_VM_PAGE()
for(int i = 0; i < 100; i++) {
    pa = (paddr_t) random() % (addr_t) ctob(VALID_END_PFN_1);
    PHYS_TO_VM_PAGE(pa);
}</pre>
```


- The most frequent opeation is uvm_physseg_find()
- Copied over the PHYS_TO_VM_PAGE() macro and the related code from uvm_page.c
- Plug in segments and then do multiple calls to

```
PHYS_TO_VM_PAGE()
for(int i = 0; i < 100; i++) {
    pa = (paddr_t) random() % (addr_t) ctob(VALID_END_PFN_1);
    PHYS_TO_VM_PAGE(pa);
}</pre>
```

• After some tweaking around we managed to write up the tests varying from 100 calls to 100 Million calls

Things to Note

- This methodology is not a perfect load test since there is a call to random()
- This will cumulatively add up to the runtime of the function we are trying to load test.

NetBSD'

Things to Note

- This methodology is not a perfect load test since there is a call to random()
- This will cumulatively add up to the runtime of the function we are trying to load test.
- All of the ATF tests have ATF_CHECK_EQ(true, true) at the bottom of the test indicating the test will never fail
- This is done because the test is **NOT** a check of correctness

We implemented two types of test strategies

• Fixed size segment: Here we plug in a "fixed" size segment. And pick a random address to do the PHYS_TO_VM_PAGE(). The variable here was the amount of calls done to PHYS_TO_VM_PAGE()

We implemented two types of test strategies

- Fixed size segment: Here we plug in a "fixed" size segment. And pick a random address to do the PHYS_TO_VM_PAGE(). The variable here was the amount of calls done to PHYS_TO_VM_PAGE()
- Fragmented segment: Here we plug in a known size segment. After which we start unplugging areas of the memory. Then we pick a random address to do PHYS_TO_VM_PAGE(). Here the variable was the memory size meaning, the bigger memory segment the more fragmented it was.

An example run of these tests with the standard atf-run piped through atf-report will have a similar output.

Note: In the results 100 consecutive runs were done and then the average, minimum

and maximum runtimes were calculated.

0 skipped test cases.

```
t uvm physseg load (1/1): 11 test cases
    uvm physseg 100: [0.003286s] Passed.
    uvm physseg 100K: [0.010982s] Passed.
    uvm physseg 100M: [8.842482s] Passed.
    uvm physseg 10K: [0.004398s] Passed.
    uvm physseg 10M: [0.954270s] Passed.
    uvm physseg 128MB: [2.176629s] Passed.
    uvm physseg 1K: [0.002702s] Passed.
    uvm physseg 1M: [0.094821s] Passed.
    uvm physseg 1MB: [0.984185s] Passed.
    uvm physseg 256MB: [2.485398s] Passed.
    uvm physseg 64MB: [0.914363s] Passed.
[16.478686s]
Summary for 1 test programs:
    11 passed test cases.
    O failed test cases.
    0 expected failed test cases.
```

Benchmark results

Test Name	Average	Minimum	Maximum
uvm_physseg_100	0.004599	0.003286	0.010213
uvm_physseg_1K	0.002740	0.001991	0.005747
uvm_physseg_10K	0.003491	0.002836	0.007941
uvm_physseg_100K	0.011424	0.009388	0.017161
uvm_physseg_1M	0.093359	0.079128	0.138379
uvm_physseg_10M	0.892827	0.813503	1.172205
uvm_physseg_100M	8.932540	8.434525	11.616543

Table 1: R-B tree implementation

Test Name	Average	Minimum	Maximum
uvm_physseg_100	0.004714	0.003511	0.013895
uvm_physseg_1K	0.002754	0.002088	0.005318
uvm_physseg_10K	0.003585	0.002666	0.005271
uvm_physseg_100K	0.011007	0.009199	0.016627
uvm_physseg_1M	0.086208	0.076989	0.116637
uvm_physseg_10M	0.843048	0.782676	0.980598
uvm_physseg_100M	8.434760	8.128623	9.132065

Table 2: Static array implementation

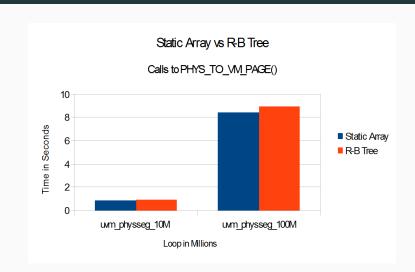
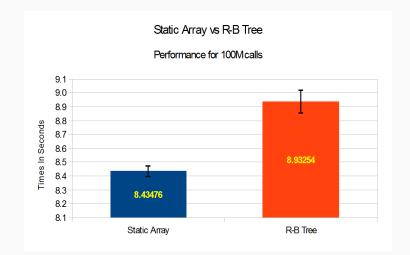


Figure 1: A closer look at the 10M and 100M calls side-by-side

Since the 100M calls, took the most amount of time, we did some very specific analysis on this.


We calculated the **Average**, **Standard Deviation** (**Population**) and **Margin of Error** with a 95% confidence interval.

In a total of 100 runs, the random() function contributed to roughly 2.03 seconds for the average runtime, for a 100 Million calls to PHYS_TO_VM_PAGE().

	Static Array	R-B Tree
Average	8.43476	8.93254
Standard Deviation	0.19331	0.41553
Margin of Error	±0.03789	±0.08144

Table 3: Comparison of the average, standard deviation and margin of error for the 100M calls to <code>PHYS_TO_VM_PAGE()</code>

Figure 2: Clearly there is a 5.59% degradation in performance with the R-B tree implementation

- Number after test name indicates the amount of memory on which fragmentation was done
- Fragmentation was done by uvm_physseg_unplug()
- After unplug was completed PHYS_TO_VM_PAGE () was called 10M (million) times for every test.

Test Name	Average	Minimum	Maximum
uvm_physseg_1MB	1.015810	0.941942	1.361913
uvm_physseg_64MB	0.958675	0.877151	1.279663
uvm_physseg_128MB	2.155270	2.024838	2.866540
uvm_physseg_256MB	2.550920	2.360252	3.736369

Table 4: Comparison of average, minimum and maximum execution times of various load tests with uvm_hotplug(9) enabled on fragmented memory segments.

Calls to PHYS_TO_VM_PAGE() after fragmentation

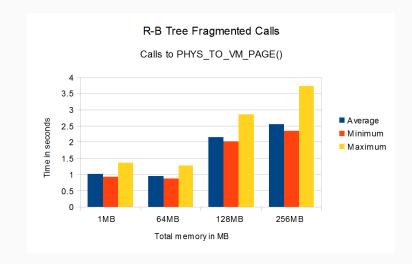


Figure 3: R-B tree performance for 10M Calls to PHYS_TO_VM_PAGE() after fragmentation at every 8 PFN

Conclusion and future work

Looking back...

- rumpkernel(7) based testing?
- Code coverage, maybe?
- Performance testing in an actual live kernel implementation with dtrace(1)

• Systems Programming can be made much less stressful by using existing Software Engineering techniques.

- Systems Programming can be made much less stressful by using existing Software Engineering techniques.
- The availability of general purpose APIs such as rbtree(3) and extent(9) in the NetBSD kernel, which makes implementation much less headache.

• We would like to encourage other NetBSD developers to use this API to write hotplug/ unplug drivers for their favourite platforms with suitable hardware.

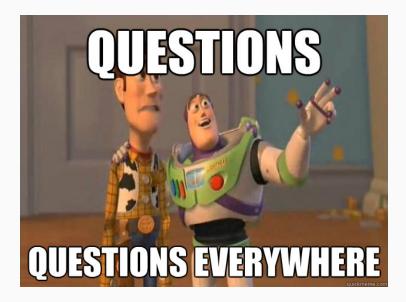
- We would like to encourage other NetBSD developers to use this API to write hotplug/ unplug drivers for their favourite platforms with suitable hardware.
- We also encourage other BSDs to pick up our work since this will clean up the current legacy implementations which are pretty much identical.

Credits and References

Thank you

- The NetBSD Foundation <http://www.NetBSD.org/foundation> generously funded this work.
- KeK <hello@kek.org.in> provided a cozy space right next to Kovalam Beach for us to hammer out the implementation.
- Chuck Silvers <chs@NetBSD.org> reviewed and helped refine the APIs. He also provided deep insight into the challenges of architecting such low level code.
- Matthew Green <mrg@NetBSD.org> made many helpful suggestions and critical feedback during the development and integration timeframe.
- **Maya Rashish** <maya@NetBSD.org> helped expose the API to multiple usecase situations (including header breakage in pkgsrc).
- Nick Hudson <skrll@NetBSD.org> contributed bugfixes, testing and integration on a wide range of hardware ports.
- **Philip Paeps** <philip@FreeBSD.org> helped guide creation, review and correction of the content of abstract and paper for uvm_hotplug(9)
- Thomas Klausner <wiz@NetBSD.org> helped make corrections to man page of uvm_hotplug(9)
- Tom Flavel <tom@printf.net> coerced cherry@NetBSD.org towards TDD, who was able to interest Santhosh Raju in applying the method to kernel programming. This allegedly turned out to be a good thing eventually.

... And to all others who helped us along the way and we may have accidentally missed out or forgot to mention.



... And to all others who helped us along the way and we may have accidentally missed out or forgot to mention.

And of course the **audience** for being here and patient while listening to the talk.

Questions

- uvm_hotplug(9) man page http://netbsd.gw.com/cgi-bin/man-cgi?uvm_hotplug++NetBSD-current
- uvm_hotplug(9) port-masters' FAQ https://wiki.netbsd.org/features/uvm_hotplug/
- uvm(9) man page http://netbsd.gw.com/cgi-bin/man-cgi?uvm+9+NetBSD-current
- rbtree(3) man page http://netbsd.gw.com/cgi-bin/man-cgi?rbtree+3+NetBSD-current
- atf(7) man page http://netbsd.gw.com/cgi-bin/man-cgi?atf+7+NetBSD-current
- uvm_hotplug(9) development blog http://fraggerfox.homenet.org:10080/bsd-blog/

The End