
A Modern spell(1)

Abhinav Upadhyay
<abhinav@NetBSD.org>

EuroBSDCon 2017, Paris



Outline
➢ Shortcomings in the old spell(1)
➢ Feature Requirements of a modern spell(1)
➢ Implementation Details of new spell(1) 
➢ Performance comparison with other open source alternatives
➢ Integrations and demos



The beginning of the end



Shortcomings in the old spell(1)
➢ Very old - dates back to Unix Version 7



Shortcomings in the old spell(1)
➢ Very old - dates back to Unix Version 7
➢ Uses inflection rules



Shortcomings in the old spell(1)

➢ Very old - dates back to Unix Version 7
➢ Uses inflection rules

○ First checks if a word exists in the dictionary or not
○ If it does not -
○ Checks if the string contains certain prefixes - (pre, post, anti, meta, 

non, re) and removes them
○ Checks if the string contains certain suffixes - (ness, ed, ing, able, ly) 

and removes them
○ If final word exists in the dictionary, it believes spelling is correct



Shortcomings in the old spell(1)

➢ Very old - dates back to Unix Version 7
➢ Uses inflection rules

○ First checks if a word exists in the dictionary or not
○ If it does not -
○ Checks if the string contains certain prefixes - (pre, post, anti, meta, 

non, re) and removes them
○ Checks if the string contains certain suffixes - (ness, ed, ing, able, ly) 

and removes them
○ If final word exists in the dictionary, it believes spelling is correct

➢ The rules only apply for English language



Shortcomings in the old spell(1)

➢ Very old - dates back to Unix Version 7
➢ Uses inflection rules

○ First checks if a word exists in the dictionary or not
○ If it does not -
○ Checks if the string contains certain prefixes - (pre, post, anti, meta, 

non, re) and removes them
○ Checks if the string contains certain suffixes - (ness, ed, ing, able, ly) 

and removes them
○ If final word exists in the dictionary, it believes spelling is correct

➢ The rules only apply for English language
➢ No spelling corrections



Shortcomings in the old spell(1)

➢ Very old - dates back to Unix Version 7
➢ Uses inflection rules

○ First checks if a word exists in the dictionary or not
○ Checks if the string contains certain prefixes - (pre, post, anti, meta, 

non, re) and removes them
○ Checks if the string contains certain suffixes - (ness, ed, ing, able, ly) 

and removes them
○ If final word exists in the dictionary, it believes spelling is correct

➢ The rules only apply for English language
➢ No spelling corrections
➢ Lack of a library interface for other applications



Expectations from new spell(1)



Expectations from new spell(1)
➢ Do spell suggestions apart from just spell check



Expectations from new spell(1)
➢ Do spell suggestions apart from just spell check
➢ Not use algorithms strictly tied to just the English language



Expectations from new spell(1)
➢ Do spell suggestions apart from just spell check
➢ Not use algorithms strictly tied to just the English language
➢ Provide a library interface



What have I done?



What have I done?
➢ New bigger dictionary
➢ New spell(1) implementation using levenshtein distance, Double Metaphone 

algorithms, and ternary tries
➢ A benchmark comparison against aspell, ispell and hunspell
➢ Integration with sh(1) for auto-completion and spell check



New Dictionary
➢ Expanded /usr/share/dict/words

○ Includes all verb, noun and adjective forms



New Dictionary
➢ Expanded /usr/share/dict/words

○ Includes all verb, noun and adjective forms

Old dictionary New Dictionary

Size 235008 2.4M

Number of words 421128 4.5M



New spell(1) Implementation
➢ Two types of spell check problems 



New spell(1) Implementation
➢ Two types of spell check problems

○ Non-word errors  - e.g. appled for applied



➢ Two types of spell check problems
○ Non-word errors - .e.g appled for applied 
○ Real-word errors - e.g. dessert for desert, there for three, piece for peace

New spell(1) Implementation



Handling Real-word Errors



➢ Much harder problem
➢ Cannot simply lookup the dictionary
➢ Word bi-grams or tri-grams could be used to detect real-word errors

○ Apple feel from the tree
○ “feel” not commonly used with “apple” and “from”, but “fell” is

➢ Much expensive, need to scan every word with a window of 3 or 4 words.
➢ Not in the scope of the current project but possible future work

Handling Real-word Errors



Handling non-word errors



Handling non-word errors
➢ Very simple to detect (just look up the dictionary)



Handling non-word errors
➢ Very simple to detect (just look up the dictionary)
➢ No need for complex inflection rules with the expanded dictionary - much 

more reliable in detecting errors



Dictionary Representation and Lookup



Dictionary Representation and Lookup
➢ Dictionary Representation - several options
➢ Hash table - O(1) lookup but no worse case guarantee
➢ Red Black Trees - O(lg n) guaranteed lookup time but requires complete 

string comparisons in the worst case
➢ Ternary Tries - O(lg n) lookup and does not require string comparisons with 

every word in the dictionary, but costs some extra memory



Ternary Search Tries



➢ Much like a binary search tree
➢ Each node stores one character and has three children (left, middle, right)
➢ Left subtree - for characters smaller than the character at the root node
➢ Right subtree - for characters greater than the character at the root node
➢ Middle subtree - for characters matching the character at the root node
➢ Provides symbol table APIs as well as APIs for prefix match

Ternary Search Tries



Ternary Search Tries



Doing Spell Correction



Doing Spell Correction
➢ Edit Distance Technique
➢ Metaphone algorithm
➢ N-gram models



Edit Distance Techniques
➢ Edit distance - number of edits (insertion, deletion, replacement of characters) 

required in a word to convert into another word.



Edit Distance Techniques
➢ Edit distance - number of edits (insertion, deletion, replacement of characters) 

required in a word to convert into another word.
➢ A majority of spelling errors are just one 1 edit distance away from the correct 

spelling



Example of words 1 edit distance away from “teh”:

deletes =  ['eh', 'th', 'te']

transpose =  ['eth', 'the']

replaces =  ['aeh', 'beh', 'ceh', 'deh', 'eeh', 'feh', ..., 'tez’]

inserts =  ['ateh', 'bteh', 'cteh', 'dteh', 'eteh', 'fteh', ..., 'zteh'] 

Edit Distance Technique



Metaphone Algorithm

➢ A phonetic algorithm (a better replacement for soundex)
➢ Developed by Lawrence Phillips in 1990
➢ Superseded by Double Metaphone in 2000 (by the same 

author)
➢ Latest version Metaphone 3 (but only available as a 

commercial implementation)
➢ 99% accurate for English and covers peculiarities in 

several other languages as well (Slavic, German, Celtic, 
Greek, French etc.)

➢ Double Metaphone is used by aspell



Word Bigrams



Word Bigrams
➢ A useful technique to get more accurate suggestions
➢ When having more than possible corrections for a misspelled word -
➢ Look at the next and previous word and see which correction fits the best
➢ For instance: “I am not feeling wery well”



Strategy for Spell Correction



Strategy for Spell Correction
➢ Find all possible corrections at distance 1
➢ If no match found, find words having the same metaphone codes at distance 

0, 1 and 2 with the misspelled word
➢ If still no match found, find words at edit distance 2



Strategy for Spell Correction
➢ Some tricks for improving accuracy:

○ Lower weight to candidate corrections requiring modification at first character
○ Lower  weight to candidate corrections involving replacement of characters
○ Higher weight to candidates having same metaphone code as the original incorrect spelling



Performance Comparison



Performance Comparison

First 1-5 1-10 1-25

Aspell 0.60.6/Normal 73.8 96.1 97.6 98.3

Aspell 0.60.6/Slow 74.0 96.6 98.2 99.0

Hunspell 1.1.12 80.5 96.5 97.1 97.1

ISpell 3.1.20 77.0 84.7 85.0 85.1

nbspell/slow 91.0 95.1 95.4 95.4

nbspell/fast 88.7 93.1 93.2 93.4



Demo



Conclusion
➢ Performance comparable to other popular open source implementations
➢ Much room for further investigation and improvement
➢ But nice to have a BSD licensed spell checker + library when you need it



Code
https://github.com/abhinav-upadhyay/nbspell



Questions



Thank you!


