
A modern replacement for spell(1)

Abhinav Upadhyay <abhinav@NetBSD.org>

AsiaBSDCon 2017

Problems with old spell

Problems with old spell
Very ancient - dates back to Unix version 7

Problems with old spell
Very ancient - dates back to Unix version 7
Uses inflection rules to do spell check

Problems with old spell
Very ancient - dates back to Unix version 7
Uses inflection rules to do spell check
Rules not 100% accurate, for example mis-spellings
like appled, coffeed, undoubt, repremanded,
undoubtedlys are not caught

Problems with old spell
Very ancient - dates back to Unix version 7
Uses inflection rules to do spell check
Rules not 100% accurate, for example mis-spellings
like appled, coffeed, undoubt, repremanded,
undoubtedlys are not caught
Rules only work for English language

Problems with old spell
Very ancient - dates back to Unix version 7
Uses inflection rules to do spell check
Rules not 100% accurate, for example mis-spellings
like appled, coffeed, undoubt, repremanded,
undoubtedlys are not caught
Rules only work for English language
No support for spell corrections

Problems with old spell
Very ancient - dates back to Unix version 7
Uses inflection rules to do spell check
Rules not 100% accurate, for example mis-spellings
like appled, coffeed, undoubt, repremanded,
undoubtedlys are not caught
Rules only work for English language
No support for spell corrections
No library interface for other applications to add spell
check support - shells, pkgin, pkg_add, apropos could
benefit

A modern spell(1)

A modern spell(1)
Uses a expanded dictionary instead of inflection rules
(size of new dictionary 5.1M compared to 2.4 M of the
old dictionary)

A modern spell(1)
Uses a expanded dictionary instead of inflection rules
Levenshtein distance and soundex techniques used
for finding possible corrections

A modern spell(1)
Uses a expanded dictionary instead of inflection rules
Levenshtein distance and soundex techniques used
for finding possible corrections
Also support for n-gram models to do context
sensitive corrections and grammar checks
(experimental WIP)

A modern spell(1)
Uses a expanded dictionary instead of inflection rules
Levenshtein distance and soundex techniques used
for finding possible corrections
Also support for n-gram models to do context
sensitive corrections and grammar checks
(experimental WIP)
A tool to parse any corpus and generate dictionary to
do application specific spell check

A modern spell(1)
Uses a expanded dictionary instead of inflection rules
Levenshtein distance and soundex techniques used
for finding possible corrections
Also support for n-gram models to do context
sensitive corrections and grammar checks
(experimental WIP)
A tool to parse any corpus and generate dictionary to
do localized or application specific spell check
The core spell checking and correction functionality
available as a reusable library

How spell correction works
Levenshtein distance - minimum number of edits
required to convert one string into another
Generate all possible words at distance 1 or 2 and see
which ones of them are in the dictionary
Lower weight to corrections involving a change in the
1st character or replacement of a character given
Higher weight to corrections having the same soundex
code
On no match at distance 1, same process done at
distance 2
If still no match, word having the same soundex code
with minimum edit distance selected.

Support for other
languages

Levenshtein distance is language agnostic
Dictionary for any language can be generated and
used for spell checking
But before that some work needed to add support for
wide chars

Comparison with GNU
aspell

Total number of tests: 3945
Matches at first place: 91.33% (aspell 74%)
Matches at positions 1-5: 95.26% (aspell 96.6%)
Matches at positions 1-10: 95.59% (aspell 98.2%)
Matches at positions 1-25: 95.77% (aspell 99%)
Matches at positions 1-50: 95.84% (aspell 99.2%)
Matches at 1-100: 95.92% (aspell 99.2%)

Questions?

Thank you :-)

